TABLE OF CONTENTS

CHAPTER	PARTICULARS	PAGE NO.
ABSTRACT | iii - v
LIST OF TABLES | viii - x
LIST OF FIGURES | xi - xiii
LIST OF ABBREVIATIONS | xiv - xv

1 | INTRODUCTION | 1
1.1 | Cancer/neoplasia | 2
1.2 | Risk Factors or causes of cancer development | 2
 1.2.1 | Major modifiable risk factors | 3
 1.2.2 | Other modifiable risk factors | 4
 1.2.3 | Non-modifiable risk factors | 5
 1.2.4 | Other risk factors | 5
1.3 | Mechanism of Cancer Development | 6
1.4 | Epidemiology of Hepatocellular Carcinoma (HCC) | 8
1.5 | The Future on global epidemic of cancer | 10
1.6 | Natural products and defense against carcinogenesis | 14

2 | REVIEW OF LITERATURE | 17
2.1 | Liver and Structure | 17
 2.1.1 | Anatomy | 17
 2.1.2 | Microanatomy of the liver | 18
 2.1.3 | Contents of Hepatocytes | 20
 2.1.4 | Functions | 21
2.2 | Hepatocellular carcinoma (HCC) | 23
 2.2.1 | Stepwise development of the carcinocenic process | 24
 2.2.1.1 | Initiation | 25
 2.2.1.2 | Promotion | 27
 2.2.1.3 | Progression | 28
 2.2.2 | Causative Factors of Hepatocellular Carcinoma (HCC) | 29
 2.2.2.1 | HCC and Cirrhosis | 29
 2.2.2.2 | HCC and Infectious Hepatitis B and C Virus | 30
 2.2.2.3 | Hereditary Liver Disease | 30
 2.2.2.4 | Ethanol Ingestion | 31
 2.2.2.5 | Exogenous Hormonal Intake | 31
 2.2.2.6 | Obesity | 31
 2.2.2.7 | Chemicals | 32
 2.2.2.8 | Genetics of Hepatocellular Carcinoma | 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3</td>
<td>Signs and symptoms</td>
<td>34</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Pathology of Hepatocellular carcinoma</td>
<td>34</td>
</tr>
<tr>
<td>2.2.4.1</td>
<td>Microscopic identification of HCC</td>
<td>34</td>
</tr>
<tr>
<td>2.2.4.2</td>
<td>Macroscopic identification of HCC</td>
<td>35</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Diagnosis of hepatocellular Carcinoma</td>
<td>35</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Prevention</td>
<td>36</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Treatment and management of HCC</td>
<td>36</td>
</tr>
<tr>
<td>2.2.7.1</td>
<td>Surgery</td>
<td>37</td>
</tr>
<tr>
<td>2.2.7.2</td>
<td>Liver transplantation</td>
<td>37</td>
</tr>
<tr>
<td>2.2.7.3</td>
<td>Radiofrequency ablation (RFA)</td>
<td>38</td>
</tr>
<tr>
<td>2.2.7.4</td>
<td>Focused External Beam Radiation</td>
<td>38</td>
</tr>
<tr>
<td>2.2.7.5</td>
<td>Selective internal radiation therapy</td>
<td>38</td>
</tr>
<tr>
<td>2.2.7.6</td>
<td>Cryosurgery</td>
<td>39</td>
</tr>
<tr>
<td>2.2.7.7</td>
<td>Cancer chemotherapy</td>
<td>40</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Experimental hepatocarcinogenesis</td>
<td>43</td>
</tr>
<tr>
<td>2.2.8.1</td>
<td>Background</td>
<td>43</td>
</tr>
<tr>
<td>2.2.8.2</td>
<td>N-nitrosocompound as hepatocarcinogens</td>
<td>44</td>
</tr>
<tr>
<td>2.2.8.3</td>
<td>N-nitrosodiethylamine (NDEA) as a model in experimental hepatocarcinogenesis</td>
<td>46</td>
</tr>
<tr>
<td>2.2.8.4</td>
<td>Liver tumour promoters</td>
<td>49</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Antioxidant and Disease</td>
<td>50</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Review on antitumour against NDEA induced-hepatocarcinogenesis</td>
<td>52</td>
</tr>
<tr>
<td>2.2.10.1</td>
<td>Phytoconstituents used in HCC</td>
<td>52</td>
</tr>
<tr>
<td>2.2.10.2</td>
<td>Plants used in HCC</td>
<td>54</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Silymarin as standard drug</td>
<td>61</td>
</tr>
<tr>
<td>2.3</td>
<td>Rational for selection of the plants of this study</td>
<td>68</td>
</tr>
<tr>
<td>2.4</td>
<td>Review of plant (Fumaria indica)</td>
<td>70</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Chemical review</td>
<td>72</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Pharmacological review</td>
<td>73</td>
</tr>
<tr>
<td>2.5</td>
<td>Review of plant (Tephrosia Purpurea)</td>
<td>75</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Chemical review</td>
<td>77</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Pharmacological review</td>
<td>78</td>
</tr>
</tbody>
</table>

3 AIM AND OBJECTIVES OF THE STUDY 82

4 MATERIALS AND METHODS 84

4.1 Sources of chemicals /reagents 84

4.2 Collection and identification of the plant materials 84

4.3 Animals Used 85

4.4 Phytochemical studies 85
4.4.1 Preparation of 50% EtOH extract of *Fumaria indica* and *Tephrosia purpurea*

4.4.2 Preliminary phytochemical screening
- 4.4.2.1 *Alkaloids*
- 4.4.2.2 *Carbohydrates*
- 4.4.2.3 *Flavonoids*
- 4.4.2.4 *Glycosides*
- 4.4.2.5 *Test for proteins and amino acid*
- 4.4.2.6 *Saponins*
- 4.4.2.7 *Steroids*
- 4.4.2.8 *Tannins*

4.4.3 Preliminary phytochemical fingerprint (HPTLC) analysis of 50% ethanolic extracts of *Fumaria indica* and *Tephrosia purpurea*
- 4.4.3.1 *Quantification and Documentation*
- 4.4.3.2 *Procedure*
- 4.4.3.3 *Visualization and scanning*

4.4.4 High Performance Liquid Chromatography (HPLC)
- 4.4.4.1 *HPLC analysis of Fumaria indica extract*
- 4.4.4.2 *HPLC analysis of Fumaria indica extract*

4.5 Toxicological studies
- 4.5.1 Acute toxicity study
- 4.5.2 Subacute toxicity study
 - 4.5.2.1 *Collection of blood samples and organs*
 - 4.5.2.2 *Observations and examinations*

4.6 Haematological parameters investigated
- 4.6.1 Haematological studies
- 4.6.2 Differential Leucocyte Count

4.7 Bio-chemical parameters investigated
- 4.7.1 Determination of Serum glutamic oxaloacetic transaminase (SGOT)/aspartate transaminase (AST)
- 4.7.2 Determination of Serum glutamate pyruvate transaminase (SGPT)/alanine transaminase (ALT)
- 4.7.3 Determination of serum alkaline phosphatase (SALP)/Alkaline phosphatase (ALP)
- 4.7.4 Determination of serum γ glutamyl transferase (γ-GT) activity
- 4.7.5 Determination of serum bilirubin
- 4.7.6 Total protein (TP) and albumin (ALB)
4.7.7 Total cholesterol
4.7.8 Estimation of serum creatinine
4.7.9 Glucose estimation
4.7.10 Estimation of Alfa- Fetoprotein (AFP)
4.7.11 Estimation of Carcinoembryonic Antigen (CEA)
4.7.12 Histopathological studies

4.8 Pharmacological studies
4.8.1 Experimental design and induction of hepatocellular carcinoma (HCC)
4.8.2 Assessment of liver injury markers and liver tumor markers
4.8.3 Assessment of antioxidant parameters
4.8.3.1 Preparation of PMS (post mitochondrial supernatant)
4.8.3.2 Assessment of lipid peroxidation (LPO)
4.8.3.3 Assessment of reduced glutathione (GSH)
4.8.3.4 Assessment of catalase (CAT)
4.8.3.5 Assessment of superoxide dismutase (SOD)
4.8.3.6 Assessment of Glutathione peroxidase (GPx)
4.8.3.7 Assessment of glutathione-S-transferase (GST)
4.8.4 Histopathological assessment

4.9 Statistical analyses

5 RESULTS
5.1 RESULTS OF FUMARIA INDICA
5.1.1 Preliminary phytochemical studies
5.1.1.1 Extraction and Preliminary phytochemical screening of 50% EtOH extract of Fumaria indica
5.1.1.2 HPTLC analysis of 50% EtOH extract of Fumaria indica
5.1.1.3 HPLC analysis of Fumaria indica
5.1.2 Toxicological studies
5.1.2.1 Acute toxicity study
5.1.2.2 Subacute toxicity study
5.1.3 Pharmacological studies
5.1.3.1 Effect of 50% ethanolic extract of Fumaria indica on body weight, liver weight and relative liver weight in control and NDEA + CCl₄- induced HCC rats

5.1.3.2 Effect of 50% ethanolic extract of Fumaria indica on the development of liver nodules in control and NDEA + CCl₄- induced HCC rats

5.1.3.3 Effect of 50% ethanolic extract of Fumaria indica on liver injury and cancer markers in control and NDEA + CCl₄ -induced HCC in rats

5.1.3.4 Effect of 50% ethanolic extract of Fumaria indica on Lipid peroxidation (LPO) and levels of antioxidant enzymes in liver of control and NDEA + CCl₄ -induced HCC in rats

5.1.3.5 Histopathological observations

5.1.3.6 Effect of 50% ethanolic extract of Fumaria indica treatment alone

5.2 RESULTS OF TEPHROSIA PURPUREA

5.2.1 Preliminary phytochemical studies

5.2.1.1 Extraction and Preliminary phytochemical screening of 50% EtOH extract of Tephrosia purpurea

5.2.1.2 HPTLC analysis of 50% EtOH extract of Tephrosia purpurea

5.2.1.3 HPLC analysis of Tephrosia purpurea

5.2.2 Toxicological studies

5.2.2.1 Acute toxicity study

5.2.2.2 Subacute toxicity study

5.2.3 Pharmacological studies

5.2.3.1 Effect of 50% ethanolic extract of Tephrosia purpurea on body weight, liver weight and relative liver weight in control and NDEA + CCl₄- induced HCC rats

5.2.3.2 Effect of 50% ethanolic extract of Tephrosia purpurea on the development of liver nodules in control and NDEA + CCl₄-
induced HCC rats

5.2.3.3 Effect of 50% ethanolic extract of Tephrosia purpurea on liver injury and cancer markers in control and NDEA + CCl₄ -induced HCC in rats

5.2.3.4 Effect of 50% ethanolic extract of Tephrosia purpurea on Lipid peroxidation (LPO) and levels of antioxidant enzymes in liver of control and NDEA + CCl₄ -induced HCC in rats

5.2.3.5 Histopathological observations

5.2.3.6 Effect of 50% ethanolic extract of Tephrosia purpurea treatment alone.

6 DISCUSSION

7 CONCLUSION

8 APPENDICES

Author’s Publication (Appendix I - II)

9 LIST OF PUBLICATIONS

10 BIBLIOGRAPHY