Bibliography

“From the errors of others, a wise man corrects his own”

-Publilius Syrus
BIBLIOGRAPHY


• Barroso, P. A., Marco, J. D., Kato, H., et al., (2007), ‘The identification of sand fly species, from an area of Argentina with endemic leishmaniasis, by the

- Berman, J. D., (2005), ‘Clinical status of agents being developed for leishmaniasis’, Expert Opinion on Investigational Drugs, UK, 14 (11), pp 1337–1346
• Carrio, J., Portus, M., (2002), ‘In vitro susceptibility to pentavalent antimony in Leishmania infantum strains is not modified during in vitro or in vivo passages but is modified after host treatment with meglumine antimoniate’, BMC Pharmacology, 2, pp 11.


• Cupolillo, E., Aguiar Alves, F., Brahim, L.R., et al., (2001), ‘Recent advances in the taxonomy of the New World leishmanial parasites’, *Medical Microbiology and Immunology*, Berlin, 190, pp 57-60.


understanding the life cycle,’ International Journal for Parasitology, Oxford, 33, pp 1027–1034.


• Liew, F.Y., Millott, S., Parkinson, C., et al., (1990), ‘Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine’, *Journal of Immunology*, Baltimore, MD, 144, pp 4794.

• Lira, R., Sundar, S., Makharia, A., et al., (1999), ‘Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani’, *Journal of Infectious Diseases*, Chicago, IL, 180, pp 564–567.


- Matte, C., & Descoteaux, A., (2010), ‘*Leishmania donovani* amastigotes impair gamma interferon-induced STAT1α nuclear translocation by blocking the interaction between STAT1α and importin-α5’, *Infection and Immunity*, Washington, DC, 78 (9), pp 3736–3743.
- McHugh, C.P., Thies, M.L., Melby, P.C., *et al.*, (2003), ‘Short report, a disseminated infection of *Leishmania mexicana* in an eastern woodrat,


pentavalent antimony’, *Journal of Infectious Diseases*, Chicago, IL, 157, pp 973-978.


cutaneous leishmaniasis in Guatemala’, Journal of Infectious Diseases, Chicago, IL, 165, pp 528–534.


• Reithinger, R., Mohsen, M., Wahid, M., et al., (2005), ‘Efficacy of thermotherapy to treat cutaneous leishmaniasis caused by Leishmania tropica in Kabul,”


Seifert, K., Perez-Victoria, F.J., Stettler, M., et al. (2007), ‘Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred...


- Sharma, N.L., Mahajan, V.K., Kanga, A., *et al.* (2005), ‘Localized cutaneous leishmaniasis due to *Leishmania donovani* and *Leishmania tropica*, preliminary findings of the study of 161 new cases from a new endemic focus in himachal pradesh, India.’, *American Journal of Tropical Medecine and Hygiene*, Lawrence, KS, 72, pp 819-824.


• Siedlar, M., Frankenberger, M., Benkhart, E., *et al.*, (2004), “IL-1R-Associated Kinase-1 Pam3Cys is due to ablation of tolerance induced by the lipopeptide”, *Journal of Immunology*, Baltimore, MD, 173, pp 2736-2745.


Smyly, H.J., & Young, L.W., (1924), ‗The experimental transmission of leishmaniasis to animals’, Proceedings of the Society for Experimental Biology and Medicine, Baltimore, MD, 21, pp 354.


Yeates, C., (2002), "Sitamaquine (GlaxoSmithKline / Walter Reed Army Institute)", Current Opinion in Investigational Drugs, UK, 3, pp 1446–1452
