Contents

CHAPTER 1

INTRODUCTION

1.1 Motivation of Work 1

1.2 Literature Survey 2
 1.2.1 General Description of Drive System 2
 1.2.2 DC Motor Drives 3
 1.2.3 Induction Motor Drives 4
 1.2.3.1 Control of the SCIM 4
 1.2.3.2 Control of the WRIM 5
 1.2.4 Synchronous Motor Drive 6
 1.2.5 Permanent Magnet Synchronous Motor Drives 7
 1.2.6 Switched Reluctance Motor (SRM) Drives 7
 1.2.7 Permanent Magnet DC Motor Drives 8

1.3 Converter Technology 10

1.4 Modern Control Techniques 11

1.5 Artificial Intelligence and Expert Systems in Motor Drives 13
 1.5.1 Fuzzy Logic Control Systems 13
 1.5.2 Application of Fuzzy Control in Industries - A Survey 15

1.6 Aim and Scope of Investigation 18

1.7 Organization of Thesis 18

CHAPTER 2

MOTION CONTROL – AN APPLICATION SPECIFIC REVIEW

2.1 Introduction 20

2.2 Motion Control 21
 2.2.1 Present Status of Motion Control 21
 2.2.2 Problems in Motion Control 22
2.3 Basic Servo-Amplifier
 2.3.1 Linear Servo-Amplifier
 2.3.2 PWM Servo-Amplifier
 2.3.3 Position Control Using a DC Motor
 2.3.4 Stabilization and Speed Feedback

2.4 Digital Technology in Motion Control
 2.4.1 Digital Control of Electric Drives
 2.4.2 Digital Control Systems
 2.4.2.1 Analog versus Digital Controller’s
 2.4.2.2 Processor Requirements for Digital Controllers

2.5 Fuzzy Logic Control and Criteria for Successful FLC Application
 2.5.1 Fuzzy Systems from a Control Engineering Point of View
 2.5.2 Mathematical Description of I/O Behavior of Fuzzy Controllers
 2.5.3 Fuzzy Tool Box for Matlab and Simulink
 2.5.4 Criteria for Successful Application of Fuzzy Control

2.6 Application Examples

2.7 Perspective of Motion Control
 2.7.1 Trends for Future Development

2.8 Conclusions

CHAPTER 3

ANALYSIS AND DESIGN OF POSITION CONTROLLED PERMANENT
MAGNET DC MOTOR DRIVE.

3.1 Introduction

3.2 System Modeling and Design
 3.2.1 System Elements and Operation
 3.2.2 DC Motor Modeling and its Performance
 3.2.3 Plant Modeling
3.2.4 Motor Parameters
3.2.5 Selection of Gain

3.3 Position Control Using Linear Amplifier
3.3.1 Design of Classical Controller
 3.3.1.1 Design of Lead Compensator
 3.3.1.2 Design of PI Controller

3.4 Position Control Using PWM Amplifier
3.4.1 Bi-directional PWM
3.4.2 Position Control System with Bi-directional PWM
3.4.3 Uni-directional PWM
3.4.4 Position Control System with Uni-directional PWM
3.4.5 Conclusion

3.5 Controller Implementation
3.5.1 Lead Compensator Controller
3.5.2 PI Controller
3.5.3 Microcontroller 80196KB Based Position Controller for PMDC Servomotor Drive
3.5.4 Hardware Implementation
 3.5.4.1 Optical Encoders
 3.5.4.2 Interfacing to the High Speed Input Unit (HSI)
 3.5.4.3 Driving a DC Servo Motor
 3.5.4.4 High-Speed Output Unit (HSO) To Generate Pulse Width Modulations (PWMs)
 3.5.4.5 Current Limiting
3.5.5 Software Implementation
 3.5.5.1 Main Initialization Routine
 3.5.5.2 Software Timer Interrupt Routine
 3.5.5.3 Position PI Software
 3.5.5.4 Fast Execution of Control Algorithms
3.6 Simulation and Experimental Results

3.6.1 Lead Compensated Controller Results

3.6.2 PI Controller Results

3.6.3 Functional Test Results

3.6.3.1 Step Response

3.6.3.2 Frequency Response

3.6.3.3 Determination of Dead Zone

3.6.3.4 Test for Determination of Stall Torque

3.6.3.5 Stiffness Test

3.7 Conclusions

CHAPTER 4

APPLICATION OF FUZZY CONTROL FOR PMDC SERVOMOTOR SYSTEM

4.1 Introduction

4.2 Basic Design Procedures of FLC

4.2.1 Fuzzification

4.2.2 Rule Base

4.2.3 Decision Making Logic (Rule Evaluator)

4.2.4 Defuzzification

4.2.5 Database

4.3 Types of Fuzzy Knowledge Based Controller (FKBC)

4.3.1 Gain Structures of FLC

4.3.2 Comparative Gain Design

4.3.3 Fuzzy PI Control for PMDC Motor Drive

4.4 Fuzzy Logic Controller – A Proposed Scheme

4.4.1 Fuzzification

4.4.2 Membership Functions

4.4.3 Procedure for Deriving Fuzzy Control Rules
CHAPTER 5
COMPARATIVE STUDY OF DIFFERENT CONTROL TECHNIQUES

5.1 Introduction

5.2 Friction Modeling
 5.2.1 Glossary of Terms and Effects
 5.2.2 The Seven-Parameter Friction Model
 5.2.3 Integrated Dynamic Friction Model

5.3 Magnitude of Friction Parameters
 5.3.1 Off-line Friction Parameter Identification
5.3.3.1 Position Dependent Friction

5.3.3.2 Dynamic Friction Model Parameters

5.3.3.3 Specifying Gear Backlash and Friction of the PMDC Motor Drive

5.4 Friction Compensation

5.4.1 Problem Avoidance

5.4.2 Nonmodel-Based Compensation Techniques

5.4.2.1 Modifications to Integral Control

5.4.2.2 High Servo Gains (stiff Position and Velocity Control)

5.4.2.3 Learning Control

5.4.2.4 Joint Torque Control

5.4.2.5 Dither

5.4.2.6 Inverse Describing Functions Techniques

5.4.3 Model-Based Compensation Techniques

5.4.3.1 Compensation

5.5 Adaptive Control

5.5.1 Direct Adaptive Control

5.5.2 Indirect Adaptive Control

5.6 Self-Organizing Fuzzy Controller

5.6.1 Performance Table

5.6.2 Algorithm to Modify Rules

5.6.3 PC/AT 80486DX4 Based SOFLC System

5.6.3.1 Hardware

5.6.3.2 Software

5.7 Comparison

5.7.1 Simulation Results

5.7.2 Summary of Results

5.8 Concluding Remarks
CHAPTER 6

CONCLUDING REMARKS

5.1 Conclusions 198
5.2 Suggestions for Further Work 200

Appendix 1 203-216