Chapter 3

Trivially γ-endowed graphs

The aim of this chapter is to study a concept called trivially γ-endowed graphs. In any graph G with n vertices, any minimum dominating set and the whole set are always γ-endowed. It is interesting to study those graphs for which these are the only γ-endowed sets. A study of such graphs is made in this chapter.

3.1 Introduction

In a graph G, there may be dominating sets which do not contain minimum dominating sets. Obviously, the vertex set and any minimum dominating set contain γ-sets. It may happen that these are the only sets which are γ-endowed. This means that for any positive integer k such that $\gamma(G) < k < n$, there exists a minimal dominating set of cardinality k. In this chapter, a study of these graphs called trivially γ-endowed graphs is made.
3.2 Trivially γ-endowed graphs

Definition 3.2.1 G is said to be trivially γ-endowed if G is $k \gamma$-endowed only for $k = \gamma$ and $k = n$.

Example 3.2.2

\[\gamma(G) = 2. \] G is not $k \gamma$-endowed for any t, $3 \leq t \leq 5$.

Example 3.2.3

1. P_{3n} is trivially γ endowed.

2. C_{3n} ($n \geq 2$) is trivially γ endowed.

Theorem 3.2.4 Let G be a graph with support vertex u and let u support two pendant vertices. Then G is trivially γ-endowed.
Proof:

Clearly, u is a γ-fixed vertex of G. Let D be a γ-set of G.

Then $(D - \{u\} \cup \{v_1, v_2\})$ where v_1, v_2 are pendants at u is a dominating set of G not containing any γ-set of G. Therefore, G is not $k \gamma$-endowed where $k = \gamma + 1$.

Let $\gamma < k < n$. Choose $k - (\gamma + 1)$ vertices from $(V - D) - \{v_1, v_2\}$ (it is possible since $|V - D - \{v_1, v_2\}| = n - \gamma - 2 > k - \gamma - 2 \geq k - (\gamma + 1)$) and add them with $(D - \{u\}) \cup \{v_1, v_2\}$. The resulting set is a dominating set of G of cardinality k and it does not contain u. Hence, G is not $k \gamma$-endowed for any $\gamma < k < n$. Therefore, G is trivially γ-endowed.

Theorem 3.2.5 Let G be a graph without isolates. Let G have a unique minimum dominating set. Let D be the unique minimum dominating set of G. Suppose there exists a dominating set of cardinality $\gamma + 1$ not containing D. Then, G is trivially γ-endowed.

Proof:

Let $D = \{u_1, u_2, \cdots u_\gamma\}$. Let S be a dominating set of cardinality $\gamma + 1$ not containing D. Let $u_i \in D - S$.

Case(i): Let $V - S = \{u_i\}$. Therefore, $n - \gamma - 1 = 1$. Therefore, $\gamma = n - 2$. Since there exists a dominating set of cardinality $\gamma + 1 = n - 1$ not containing D, G is trivially γ-endowed.
Case(ii): Let $|V - S| \geq 2$. Let A be a subset of $V - S$ not containing u_i. Then $1 \leq |A| \leq n - \gamma - 2$. $S \cup A$ is a dominating set of G not containing D. By adding k_1 vertices from $V - (S \cup \{u_i\})$ with S, $1 \leq k_1 \leq n - \gamma - 2$, we get dominating sets of cardinality $\gamma + 1 + k_1$ which do not contain D. Therefore, G is not $k\gamma$-endowed for all k, $\gamma + 1 \leq k \leq \gamma + 1 + n - \gamma - 2 = n - 1$. Therefore G is trivially γ-endowed.

Corollary 3.2.6 Let G be a graph without isolates. Let $D = \{u_1, u_2, u_3 \cdots u_\gamma\}$ be a unique minimum dominating set of G. If for some i, $1 \leq i \leq \gamma$, $\gamma(<pn(u_i, D)>)=2$, then there exists a dominating set of cardinality $\gamma + 1$ not containing D and hence G is trivially γ-endowed.

Proof:

Let $\gamma(<pn(u_i, D)>)=2$. Let D_1 be a minimum dominating set of $<pn(u_i, D)>$. Let $D_1 = \{x_1, x_2\}$. Then $S - (D - \{u_i\}) \cup \{x_1, x_2\}$ is a dominating set of G of cardinality $\gamma + 1$ and S does not contain D. Therefore, there exists a dominating set of cardinality $\gamma + 1$ not containing the minimum dominating set D. By the above theorem G is trivially γ-endowed.

Remark 3.2.7 The condition that G has a unique dominating set can not be dropped: For example in P_5, there are three minimum dominating set of G. There exists a dominating set of G of cardinality $(\gamma + 1)$ not containing any minimum dominating set and every four element dominating set contains a γ-set of G.

132
Remark 3.2.8 If G satisfies the hypothesis of the theorem

then $\gamma(G) \leq n - 2$.

Remark 3.2.9 There exists a graph G without isolates having a unique minimum dominating set say $D = \{u_1, u_2 \ldots u_\gamma\}$ with $\gamma(<pn(u_i, D)) \geq 3$ for every i, $1 \leq i \leq \gamma$ and there exists a dominating set of cardinality $\gamma + 1$ not containing D. Let $G =$

\[
\begin{align*}
D = \{v_4, v_5\} \text{ is the unique minimum dominating set of } G, \\
pn(v_4, D) = \{v_1, v_2, v_3\} \text{ and } \gamma < pn(v_4, D) \geq 3, \\
pn(v_5, D) = \{v_6, v_7, v_8, v_9, v_{10}\} \\
\text{and } \gamma < pn(5, D) \geq 5. \ S = \{v_5, v_{10}, v_{11}\} \text{ is a dominating set of } G \text{ of cardinality } \gamma + 1 = 3 \text{ and } S \text{ does not contain } D. \text{ Clearly } G \text{ is trivially } \\
\gamma\text{-endowed.}
\end{align*}
\]
Theorem 3.2.10 Let G be a graph. Then G satisfies

(i) the minimum dominating set of G is unique. (ii) $\gamma(G) = n - 3$ and

(iii) There exists a $(\gamma(G) + 1)$ dominating set not containing D

if and only if $G = H \cup tK_1$ where $t \geq 0, H =$ \[\text{Diagram} \]

Proof:

Case(i): Suppose G has no isolates. Then $\gamma(G) \leq n/2$. That is,

$n - 3 \leq n/2$. Therefore, $n \leq 6$. Since $\gamma(G) = n - 3 \geq 1, n \geq 4$.

By inspecting

all the graphs of order 4, 5, 6. We get that $G =$ \[\text{Diagram} \]

Case(ii)

Suppose G has t isolates say $u_1, u_2, \cdots u_t$. Let G_1 be the graph induced by $V(G) = \{u_1, u_2, \cdots u_t\}$. Then G_1 has no isolates

$\gamma(G_1) = \gamma(G) - t = n - 3 - t$. $|V(G_1)| = n - t$. Therefore,

$\gamma(G_1) = |V(G_1)| - 3$. Since G has a unique minimum dominating set say D, $D_1 = D - \{u_1, u_2, \cdots u_t\}$ is the unique minimum dominating set of G_1. By hypothesis there exists a $(\gamma(G) + 1)$ dominating set S in G not containing D. Therefore, $S_1 = S - \{u_1, u_2, \cdots u_t\}$ is a dominating set in G_1 not containing D.

134
Therefore, \(G_1 \) satisfies the hypothesis of case (i). Therefore,

\[
G_1 =
\]

Therefore,

\[
G =
\]

Corollary 3.2.11 Let \(G \) be a graph. Then \(G \) satisfies

(i) the minimum dominating set of \(G \) is unique. (ii) \(\gamma(G) = n - 3 \) and

(iii) \(G \) is trivially \(\gamma \)-endowed

if and only if \(G = H \cup tk_1 \) Where \(t \geq 0 \),

\[
H =
\]
Proof:

If \(G = H \cup tK_1 \) where \(H = t \geq 0 \),
then \(G \) satisfies the three conditions. Conversely if \(G \) satisfies the three conditions, then there exists a \((\gamma(G) + 1) \) dominating set of \(G \) not containing \(D \).

Therefore, by the above theorem, \(G = H \cup tK_1 \) where \(H = t \geq 0 \).

\[\square \]

\textbf{Theorem 3.2.12} Let \(G \) be a graph. Then \(G \) satisfies

(i) the minimum dominating set of \(G \) is unique
(ii) \(\gamma(G) = n - 2 \) and
(iii) There exists a \((\gamma(G) + 1) \) dominating set not containing \(D \)
if and only if \(G = P_3 \cup tk_1 \) where \(t \geq 0 \)

Proof:

Case(i): Suppose \(G \) has no isolates. Then \(\gamma(G) \leq n/2 \). That is
\[n - 2 \leq n/2. \] Therefore, \(n \leq 4. \) Since \(\gamma(G) = n - 2 \geq 1, n \geq 3. \) Therefore, \(3 \leq n \leq 4. \) By inspecting all the graphs of order 3 and 4, we get that \(G = P_3. \)

Case (ii)

Suppose \(G \) has \(t \) isolates say \(u_1, u_2, \cdots u_t. \) Let \(G_1 \) be the graph induced by \(V(G) = \{u_1, u_2, \cdots u_t\}. \) Then \(G_1 \) has no isolates \(\gamma(G_1) = \gamma(G) - t = n - 2 - t. \) \(|V(G_1)| = n - t. \) Therefore \(\gamma(G_1) = |V(G)| - 2. \) Since \(G \) has a unique minimum dominating set say \(D, D_1 = D - \{u_1, u_2, \cdots u_t\} \) is a unique minimum dominating set of \(G_1. \) By hypothesis there exists a \((\gamma(G) + 1)\) dominating set \(S \) in \(G \) not containing \(D. \) Therefore, \(S_1 = S - \{u_1, u_2, \cdots u_t\} \) is a dominating set in \(G_1 \) not containing \(D_1. \) Therefore \(G_1 \) satisfies the hypothesis of case (i). Therefore, \(G_1 = P_3. \) Therefore \(G = P_3 \cup tK_1. \)

Corollary 3.2.13 Let \(G \) be a graph. Then \(G \) satisfies

(i) the minimum dominating set of \(G \) is unique

(ii) \(\gamma(G) = n - 2 \) and

(iii) \(G \) is trivially \(\gamma \)-endowed

if and only if \(G = P_3 \cup tK_1 \) where \(t \geq 0 \)

Proof:

If \(G = P_3 \cup tK_1 \) where \(t \geq 0 \), then \(G \) satisfies the three conditions. Conversely, if \(G \) satisfies the three conditions, then there exists a \((\gamma(G) + 1) \)
dominating set of G not containing D. Therefore, by the above theorem $G = P_3 \cup tK_1$.

\section*{Theorem 3.2.14} Let G be a graph. Then G satisfies

(i) the minimum dominating set of G is unique

(ii) $\gamma(G) = n - 4$ and

(iii) There exists a $(\gamma(G) + 1)$ dominating set not containing D

if and only if $G = P_6 \cup tk_1, D_{2,2} \cup tk_1, H_1 \cup tk_1, H_2 \cup tk_1 \cdots H_7 \cup tk_1$ Where $t \geq 0$.

\textbf{Proof:}

\textbf{Case(i):} Suppose G has no isolates. Then $\gamma(G) \leq n/2$. That is $n - 4 \leq n/2$.

Therefore, $n \leq 8$. Since $\gamma(G) = n - 4 \geq 1$, $n \geq 5$. Therefore $5 \leq n \leq 8$.

By inspecting

all the graphs of order 5, 6, 7 and 8, we get that $G = P_6 \cup tk_1, D_{2,2} \cup$

$tk_1, H_1 \cup tk_1, H_2 \cup tk_1 \cdots H_7 \cup tk_1$ where

\begin{itemize}
 \item $H_1 = \text{\begin{figure}}$
 \item $H_2 = \text{\begin{figure}}$
 \item $H_3 = \text{\begin{figure}}$
 \item $H_4 = \text{\begin{figure}}$
 \item $H_5 = \text{\begin{figure}}$
 \item $H_6 = \text{\begin{figure}}$
 \item $H_7 = \text{\begin{figure}}$
\end{itemize}
Case (ii)

Suppose \(G \) has \(t \) isolates say \(u_1, u_2, \ldots, u_t \). Let \(G_1 \) be the graph induced by \(V(G) - \{u_1, u_2, \ldots, u_t\} \). Then \(G_1 \) has no isolates \(\gamma(G_1) = \gamma(G) - t = n - 4 - t \). Therefore \(\gamma(G_1) = |V(G_1)| - 4 \). Since \(G \) has a unique minimum dominating set say \(D \), \(D_1 = D - \{u_1, u_2, \ldots, u_t\} \) is a unique minimum dominating set of \(G_1 \). By hypothesis there exists a \((\gamma(G) + 1)\) dominating set \(S \) in \(G \) not containing \(D \). \(S_1 = S - \{u_1, u_2, \ldots, u_t\} \) is a dominating set in \(G_1 \) not containing \(D_1 \). Therefore \(G_1 \) satisfies the hypothesis of case (i).

Therefore \(G_1 = P_6 \cup tk_1, D_{2,2} \cup tk_1, H_1 \cup tk_1, H_2 \cup tk_1 \cdots H_7 \cup tk_1 \). Therefore, \(G = P_6 \cup tk_1, D_{2,2} \cup tk_1, H \cup tk_1, H_2 \cup tk_1 \cdots H_7 \cup tk_1 \).

Corollary 3.2.15 Let \(G \) be a graph. Then \(G \) satisfies

(i) the minimum dominating set of \(G \) is unique

(ii) \(\gamma(G) = n - 4 \) and (iii) \(G \) is trivially \(\gamma \)-endowed

if and only if \(G = P_6 \cup tk_1, D_{2,2} \cup tk_1, H \cup tk_1, H_2 \cup tk_1 \cdots H_7 \cup tk_1 \) where \(t \geq 0 \)

Proof:

If \(G = P_6 \cup tk_1, D_{2,2} \cup tk_1, H_1 \cup tk_1, H_2 \cup tk_1 \cdots H_7 \cup tk_1 \) where \(t \geq 0 \), then \(G \) satisfies the three conditions. Conversely, if \(G \) satisfies three conditions, then there exists a \((\gamma(G) + 1)\) dominating set of \(G \) not
Corollary 3.2.16 Let \(G \) be a graph with a unique minimum dominating set. If \(G \) is not \((\gamma + 2)\) -endowed then \(G \) is not \(k \gamma \) -endowed for all \(k \) except possibly \(\gamma + 1 \).

Theorem 3.2.17 Let \(G \) be a graph with \(\gamma \) - fixed vertex \(u \). Suppose there exists a dominating set of cardinality \(\gamma + 1 \) not containing \(u \). Then \(G \) is trivially \(\gamma \) -endowed.

Proof:

Let \(D \) be a dominating set of \(G \) of cardinality \(\gamma + 1 \) and let \(u \notin D \).
Let \(S = D \cup T \) where \(u \notin T \subset V - D \). Then \(S \) is a dominating set of \(G \) of cardinality \(\gamma + 1 + |T| \) and \(0 \leq |T| \leq n - (\gamma + 2) \). Therefore \(S \) is a dominating set of \(G \) with \(\gamma + 1 \leq |S| \leq n - 1 \). Therefore, \(G \) is trivially \(\gamma \) -endowed.

Corollary 3.2.18 Let \(G \) be a graph with \(\gamma \) - fixed vertices \(u_1, u_2 \cdots u_r \). Let the minimum cardinality of a dominating set not containing \(u_i \) for some \(i \), \(1 \leq i \leq r \) be \(\gamma + t \), \(1 \leq t \leq n - \gamma - 1 \). Then \(G \) is not \(k \gamma \) -endowed for all \(k \), \(\gamma + t \leq k \leq n - 1 \).

Theorem 3.2.19 Let \(G \) be a graph with a \(\gamma \) - fixed vertex \(u \). Then \(G \) is
trivially γ-endowed if for every positive integer k, $\gamma + 1 \leq k \leq n - 1$, there exists a dominating set of G in $G - \{u\}$.

Proof:

Trivial. ■

Theorem 3.2.20 Let D be a unique minimum dominating set of G. Let $x_1, x_2, \cdots x_{r+1} \in V - D$ and let $N[x_1, x_2, \cdots x_{r+1}] \supseteq pn[u_i, D], 1 \leq i \leq r$ where $u_i \in D, 1 \leq i \leq r$. Then G is trivially γ-endowed.
Proof:

Let \(S = (D - \{u_1, u_2, \ldots, u_r\} \cup \{x_1, x_2, \ldots, x_{r+1}\}) \). Then \(S \) is a dominating set of \(G \) not containing \(D \) and \(|S| = \gamma(G) + 1 \). Therefore, \(G \) is trivially \(\gamma \)-endowed.

\[\square \]

Remark 3.2.21 Let \(G \) be a graph without isolates. Let \(D = \{u_1, u_2, \ldots, u_r\} \) be a unique minimum dominating set of \(G \). Suppose there exist \(x, y \in V - D \) such that \(N(\{x, y\} \supseteq \text{pn}(u_i, D) \cup \{u_i\}) \). Then \(S = (D - \{u_i\}) \cup \{x, y\} \) is a dominating set of \(G \) of cardinality \(\gamma + 1 \). \(S \) does not contain \(D \). Therefore, \(G \) is trivially \(\gamma \)-endowed.

\[\square \]

Illustration 3.2.22

\[
\begin{align*}
\gamma(G) &= 2 \quad \text{and} \quad \{v_2, v_4\} \text{ is a unique minimum dominating set of } G. \\
\{v_1, v_2, v_3\} \text{ is a dominating set of } G \text{ not containing the unique minimum dominating set of } G. \text{ The reason is that } N(\{v_1, v_3\} \supseteq \text{pn}(v_4, \{v_2, v_4\}) \cup \{v_4\}).
\end{align*}
\]
Remark 3.2.23 Let G be a graph without isolates. Let $D = \{u_1, u_2, \cdots u_\gamma\}$ be a unique minimum dominating set of G. If $V-D$ contains a dominating set of G of cardinality $\gamma+1$, then G is trivially γ-endowed.

Illustration 3.2.24

$D = \{v_2, v_4\}$ is the unique minimum dominating set of G. $\{v_1, v_3, v_{11}\}$ is a dominating set of G contained in $V-D$. Therefore, G is trivially γ-endowed.

Remark 3.2.25 Let D be a unique minimum dominating set of G. There exists a dominating set of G of cardinality $\gamma+1$ not containing D. Then G is trivially γ-endowed.
Remark 3.2.26 Given any positive integer \(k \) there exist a connected graph \(G \) with \(\gamma(G) = k \), \(\beta_0(G) = k + 1 \) and \(G \) is trivially \(\gamma \)-endowed. Let \(G \) be obtained from \(P_{k+2} \) by attaching pendant vertices one each at \(v_2, v_3 \cdots v_k \) where \(V(P_{k+2}) = \{v_1, v_2, v_3 \cdots v_{k+2}\} \). Then \(\gamma(G) = k \) and \(\beta_0(G) = k + 1 \) and \(G \) is trivially \(\gamma \)-endowed.

Problem: If \(\beta_0(G) = \gamma(G) + 1 \), then find necessary and sufficient condition such that \(G \) is trivially \(\gamma \)-endowed.

Theorem 3.2.27 Let \(G \) be a graph with \(\beta_0(G) = \gamma(G) + 1 \) , \(G \) is trivially \(\gamma \)-endowed if there exist a \(\beta_0 \)-set \(D = \{u_1, u_2, \cdots u_{\beta_0}\} \) with
\[
|pm[u_i, D]| = t_i, t_i \geq 2 \text{ for } i = i_1, i_2, \cdots i_s, s \geq 1 \text{ and } \beta_0 + \sum_{i \in \{i_1, i_2, \cdots i_s\}} t_i = n - 1.
\]

Proof:
Let \(D = \{u_1, u_2, \cdots u_{\beta_0}\} \) be a maximum independent set of \(G \). Suppose
\[
|pm[u_i, D]| = t_i, 1 \leq i \leq \beta_0.
\]
and let \(\beta_0 + \sum_{i \in \{i_1, i_2, \cdots i_s\}} t_i = n - 1 \) . Then \(G \) is not \(k \) \(\gamma \)-endowed for
\[
k = \beta_0 + \beta_0+1 + \cdots : \beta_0 + \sum_{i \in \{i_1, i_2, \cdots i_s\}} t_i \leq n - 1 .
\]
As \(\beta_0 = \gamma(G) + 1 \) and as \(\beta_0 + \Sigma_{i \in \{i_1, i_2, \cdots i_s\}} t_i = n - 1 \) . \(G \) is not \(k \) \(\gamma \)-endowed for \(k = \gamma(G) + 1, \gamma(G) + 2, \cdots (n - 1) \). That is \(G \) is trivially \(\gamma \)-endowed.

Theorem 3.2.28 Let \(G \) be a graph with a \(\gamma \)-fixed vertex and \(\beta_0(G) = \gamma(G) + 1 \) . Then \(G \) is trivially \(\gamma \)-endowed.
Proof:-

Let D be a maximum independent set of G. Let u be a γ fixed vertex of G. Therefore, G is not $(\gamma+1)$ γ endowed. Let $D_1 = D \cup \{v\}$, $v \neq u$. Then D_1 is a dominating set of G and D_1 does not contain a γ set of G since $u \notin D_1$. For any $\{v_1, v_2, \ldots, v_k\} \subset (V - \{u\}) - (D \cup \{v\})$, $D \cup \{v_1, v_2, \ldots, v_k\}$ is a dominating set of G not containing a γ set of G. Therefore, G is trivially γ-endowed.

Remark 3.2.29 The converse of above theorem is not true since in P_9, $\beta_0 \neq \gamma + 1$, P_9 has γ fixed vertices and P_9 is trivially γ endowed.

Theorem 3.2.30 Suppose G has a unique minimum dominating set.

i) If $\beta_0 = \gamma(G) + 1$, then G is trivially γ-endowed.

ii) If $i(G) = \gamma(G) + 1$ then G is trivially γ-endowed.

Proof:

If $\beta_0 = \gamma(G) + 1$ or $i(G) = \gamma(G) + 1$ then G contains a minimal dominating set of cardinality $\gamma(G) + 1$. Therefore G is trivially γ-endowed.

Corollary 3.2.31

(i) Let $i(G) = \gamma(G) + 1$ and G has a γ-fixed vertex. Then G is trivially γ-endowed.

(ii) Let G have a γ fixed vertex say u. Let S be a dominating set of G of
Remark 3.2.32 If S is a dominating set of G of cardinality $\gamma(G) + 1$ such that S does not contain any minimum dominating set of G then S is minimal.

Theorem 3.2.33 Let G be a graph with a γ fixed vertex and let G be not k γ-endowed for $k = \gamma(G) + 1$. Then G is trivially γ-endowed.

Proof:

Let D be a dominating set of G cardinality $\gamma(G) + 1$ such that D does not contain a minimum dominating set of G. Then D is a minimal dominating set of G. Let u be a γ-fixed vertex of G. Clearly $u \notin D$. Let $\gamma(G) + 1 < l < n - 1$. Let $D_1 = D \cup \{v_{k+1}, v_{k+2}, \ldots v_l\}$ where $k = \gamma(G) + 1$ and $u \notin \{v_{k+1}, v_{k+2}, \ldots v_l\}$. Then D_1 is a dominating set of G which does not contain a minimum dominating set of G. Hence the theorem.

Corollary 3.2.34 Let G be a graph with a γ-fixed vertex and let $\beta_0(G) = \gamma(G) + 1$ or $i(G) = \gamma(G) + 1$ or $\Gamma(G) = \gamma(G) + 1$. Then G is trivially γ-endowed.

Theorem 3.2.35 If a graph G of cardinality of order n has a minimal dominating set of cardinality $n - 1$ then
(i) \(\gamma(G) = n - 1 \) if \(G \) has exactly \((n - 2) \) isolates

(ii) \(\gamma(G) = n - t \) if \(G \) has exactly \((n - t - 1) \) isolates and the remaining vertices form a star.

Proof:

Let \(D \) be a minimal dominating set of cardinality \(n - 1 \). Let \(V(G) = \{u_1, u_2 \cdots u_n\} \) and let \(D = \{u_1, u_2 \cdots u_{n-1}\} \). \(u_n \) is adjacent to some point of \(D \) say \(u_i, 1 \leq i \leq n - 1 \).

Case(i) : \(D \) is independent. Then \(G \) is \(K_{1,t} \cup (n - t - 1)K_1 \) where \(1 \leq t \leq n - 1 \). \(\gamma(G) = 1 + n - t - 1 = n - t \).

Case(ii) : \(D \) is not independent. Let without loss of generality \(u_1 \) and \(u_2 \) be adjacent. Then \(u_n \) is adjacent with exactly one of \(u_1, u_2 \) in \(D \) (since \(D \) is minimal). Therefore \(G = P_3 \cup (n - 3)K_1 \). \(\gamma(G) = n - 2 = n - t \) where \(t = 2 \) and \(G = K_{1,t} \cup (n - t - 1)K_1 \).

Corollary 3.2.36 Let \(G \) be a graph order \(n \). \(G \) has a minimal dominating set of cardinality \(n - 1 \) iff \(G \) is \(K_{1,t} \cup (n - t - 1)K_1 \) where \(1 \leq t \leq n - 1 \)

Corollary 3.2.37 Let \(G \) be a graph of order \(n \) and let \(G \) have a minimal dominating set of cardinality \(n - 1 \). Then \(G \) is trivially \(\gamma \)-endowed iff \(G = K_{1,t} \cup (n - t - 1)K_1 \) where \(t = 1 \) or \(2 \). Equivalently if \(G \) is a graph of order \(n \) with \(\Gamma(G) = n - 1 \) then \(G \) is trivially \(\gamma \)-endowed iff \(G = K_2 \cup (n - 2)K_1 \) or \(K_{1,2} \cup K_1 \).
Theorem 3.2.38 Suppose $\Gamma(G) = n - 2$. Then G is $K_{1,t} \cup K_{1,s}$ with $t + s + 2 = n$ or $D_{r,s}$, $r + s + 2 = n$ or G is obtained from $K_{1,t}$ by adding a vertex v and making it adjacent with some or all the vertices of $K_{1,t}$ and possibly adjacent with newly added vertices which are independent. or G is $P_4 \cup (n - 4)K_1$

Proof:

Let G be a $\Gamma(G)$ set of G. Let $D = \{u_1, u_2, \cdots u_{n-2}\}$

Case(i): D is independent. Then u_{n-1} and u_n are adjacent with at least one vertex of D. u_{n-1} and u_n may be or may not be adjacent. Let $N(u_{n-1}) \cap D = \{u_{i_1}, u_{i_2} \cdots u_{i_r}\}$ and $N(u_n) \cap D = \{v_{j_1}, v_{j_2} \cdots v_{j_s}\}$. There may be common vertices in $N(u_{n-1}) \cup D$ and $N(u_n) \cap D$. Then G is $K_{1,t} \cup K_{1,s}$ with $t + s + 2 = n$ or G is $D_{r,s}$, $r + s + 2 = n$ or G is obtained from $K_{1,t}$ by adding a vertex v and making it adjacent with some or all the vertices of $K_{1,t}$ and possibly adjacent with newly added vertices which are independent.

Case(ii): D is not independent. Suppose u_1 and u_2 are adjacent, Then u_1 and u_2 must have private neighbour in $V - D$. Since $V - D = \{u_{n-1}, u_n\}$, u_{n-1} is adjacent with exactly one of u_1, u_2 and u_n is adjacent with the other. Therefore, G is $P_4 \cup (n - 4)K_1$. ■

Corollary 3.2.39 Suppose $\Gamma(G) = n - 2$. Then G is trivially γ-endowed if and only if G is $K_{1,t} \cup K_{1,s}$, $t + s + 2 = n$ and at least one of t, s is 2 and
\[2 \leq t, s \text{ or } D_{r,s}, r + s + 2 = n \text{ and at least one of } t, s \text{ is } 2 \text{ or } G \text{ is obtained from } K_{1,t} \text{ by adding a vertex } t \text{ and making it adjacent with some or all the vertices of } K_{1,t} \text{ and possibly adjacent with newly added say } s \text{ vertices which are independent and at least one of } t, s \text{ is less or equal to } 2 \text{ and the centre of } K_{1,t} \text{ or } v \text{ has a pendant vertex which is not a common vertex and if } v \text{ is adjacent with the centre of } K_{1,t} \text{ then the centre and } v \text{ should have at least one pendant vertex each which is not a common vertex.}

\[\blacksquare \]

Illustration 3.2.40

\[u_1 \quad u_2 \quad u_3 \quad u_t \]

\[v_1 \quad v_2 \quad v_3 \]

where \(t \geq 2, \gamma(G) = 2, \{u_1, v_1\} \text{ is a minimum dominating set. } \Gamma(G) = n - 2 = t + 2. \]

\[\blacksquare \]
\(G = \)

\[\gamma(G) = 2, \Gamma(G) = n - 2. \]
Illustration 3.2.43

\[G = \]

\[\gamma(G) = 2, \Gamma(G) = n - 2. \]

Remark 3.2.44

There are graph \(G \) in which \(\gamma(G) = \beta_0(G) \) and \(\Gamma(G) = \beta_0(G) + 1 \) and \(G \) is \(k \gamma \)-endowed for all \(k \), \(\gamma(G) \leq k \leq n \) except when \(k = \Gamma(G) \).
For: Let

\[v_1 v_2 G = v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_{10} \]

\[\gamma(G) = 4, \beta_0 = 4, \Gamma(G) = 5, \{v_3, v_4, v_6, v_7, v_{10}\} \text{ is a } \Gamma(G) = \text{set of } G. \]

is \(k \) \(\gamma \)-endowed for all \(k \geq 6 \).

Definition 3.2.45 A graph \(G \) is almost trivially \(\gamma \)-endowed if \(G \) is not \(k \) \(\gamma \)-endowed for all \(k, \gamma + 1 \leq k \leq n - 2 \).

Example 3.2.46 \(K_{1,n} \) is almost trivially \(\gamma \)-endowed.

Theorem 3.2.47 Let \(u, v \in V(G) \) be such that any minimum dominating set of \(G \) either contains \(u \) or \(v \). Suppose there exists a dominating set of cardinality \(\gamma + 1 \) not containing \(u \) and \(v \). Then \(G \) is almost trivially \(\gamma \)-endowed that is \(G \) is not \(k \) \(\gamma \)-endowed for all \(k, \gamma + 1 \leq k \leq n - 2 \).

Proof:

Let \(D \) be a dominating set of cardinality \(\gamma + 1 \) not containing \(u \) and \(v \). For any \(w \) not equal to \(u, v \), \(D \cup \{w\} \) is a dominating set of cardinality
\[\gamma + 2 \text{ and it does not contain any minimum dominating set of } G \]. In general if \(v_1, v_2, \ldots, v_{n-(\gamma+3)} \notin D \cup \{u, v\}, (D \cup \{v_1, v_2, \ldots, v_{n-(\gamma+3)}\}) \) is a dominating set of cardinality \(n - 2 \) and this does not contain any minimum dominating set. Thus \(G \) is not \(\gamma \)-endowed for all \(k \), \(\gamma + 1 \leq k \leq n - 2 \). \[\square \]

Corollary 3.2.48 If \(u, v \in V(G) \) such that any minimum dominating set of \(G \) either contain \(u \) or contain \(v \) and there exists a dominating set of cardinality \(\gamma + 1 \) not containing \(u \) and \(v \), and also if \(G \) is not \((n - 1) \gamma \)-endowed then \(G \) is trivially \(\gamma \)-endowed.