TABLE OF CONTENTS

CHAPTER 1
Introduction

1.1 MEDICINAL PLANTS IN DRUG DISCOVERY
 1.1.1 History
 1.1.2 Medicines from nature: Natural products and drug discovery
 1.1.3 Traditional Wisdom – Ayurveda
 1.1.3.1 Approaches for drug discovery by utilizing Ayurvedic concepts
 1.1.4 Ethnopharmacology
 1.1.5 Chemical diversity
 1.1.6 Standardization
 1.1.6.1 New analytical techniques for standardization
 1.1.7 Problems related to natural product drug discovery and strategies to overcome these problems
 1.1.7.1. Problems
 1.1.7.2. Solutions and strategies

1.2 MALARIA AND ITS TREATMENT
 1.2.1 Malaria Milestones
 1.2.2 Cause and clinical manifestation
 1.2.3 Epidemiology
 1.2.4 Plasmodium life cycle
 1.2.5 Unique aspects of antimalarial drug discovery
 1.2.6 The Prospects

1.3 GENESIS OF THE PROJECT

1.4 OBJECTIVES OF RESEARCH WORK

1.5 STRUCTURE OF THE THESIS

REFERENCES

CHAPTER 2
In vitro cultivation of Plasmodium falciparum

2.1 INTRODUCTION

2.2 DETAILED PROCEDURE FOR IN VITRO CULTIVATION AND MAINTENANCE OF PLASMODIUM FALCIPARUM CULTURE
Plasmodium falciparum

2.2.1.1 RPMI medium

2.2.1.2 Washing medium (Incomplete medium)

2.2.1.3 Serum preparation

2.2.1.4 Complete medium

2.2.2 Preparation of erythrocytes (RBCs) for culture

2.2.3 Continuous culture of Plasmodium falciparum

2.2.3.1 Initiation of culture

2.2.3.2 Monitoring culture growth

2.2.3.3 Subculturing (Passaging)

2.2.4 Synchronization of Plasmodium falciparum

2.2.4.1 Introduction

2.2.4.2 Procedure

2.2.4.3 Results

2.2.5 Freezing and thawing of Plasmodium falciparum

2.2.5.1 Cryopreservation

2.2.5.2 Revival of cryopreserved parasites

REFERENCES

CHAPTER 3
Preliminary Evaluation of Selected Medicinal Plants for Antiplasmodial Activity

3.1 INTRODUCTION

3.1.1 Selection of medicinal plants

3.2 MATERIALS AND METHODS

3.2.1 Chemicals

3.2.2 Collection and authentication of selected medicinal plants

3.2.3 Extraction of plant material

3.2.4 In vitro testing of the antimalarial activity of the selected plants

3.2.4.1 Schizont maturation inhibition assay

3.2.4.2 Lactate dehydrogenase inhibition assay

3.3 RESULTS AND DISCUSSION

3.3.1 Schizont maturation inhibition assay

3.3.2 Lactate dehydrogenase inhibition assay

3.4 CONCLUSION

REFERENCES
CHAPTER 4
Phytochemical and Pharmacological Review of Selected Plants *Adhatoda zeylanica* Nees and *Embelia ribes* Burm.f.

4.1 INTRODUCTION 55

4.2 *ADHATODA ZEYLANICA* Nees 55
 4.2.1 Botanical identity 55
 4.2.2 Distribution 55
 4.2.3 Classical names 55
 4.2.4 Vernacular names 55
 4.2.5 Botanical description 56
 4.2.6 Parts used 56
 4.2.7 Traditional uses 56
 4.2.8 Chemistry 57
 4.2.9 Pharmacology 59
 4.2.10 Therapeutic evaluation 60

4.3 *EMBELIA RIBES* Burm.f. 60
 4.3.1 Botanical identity 60
 4.3.2 Distribution 60
 4.3.3 Classical names 60
 4.3.4 Vernacular names 60
 4.3.5 Botanical description 61
 4.3.6 Parts used 61
 4.3.7 Traditional uses 61
 4.3.8 Chemistry 61
 4.3.9 Pharmacology 63
 4.3.10 Therapeutic evaluation 64

REFERENCES 65

CHAPTER 5
Bioactivity Guided Isolation of Antiplasmodial Potential from Methanolic Extract of the Leaf of *Adhatoda zeylanica* and fruit of *Embelia ribes*

5.1 INTRODUCTION 69

5.2 MATERIALS AND METHODS 69
 5.2.1 Plant material collection and authentication 69
 5.2.2 Bioactivity guided fractionation and isolation of active principle/s
from the methanolic extract of the leaf of *Adhatoda zeylanica* and fruit of *Embelia ribes*69

5.2.2.1 Preparation of the methanolic extract69

5.2.2.2 Fractionation of the methanolic extract of *A. zeylanica* and *E. ribes*70

5.2.2.3 Isolation of vasicine and vasicinone from methanolic extract of *A. zeylanica* leaf70

5.2.2.4 Isolation of embelin from methanolic extract of *E. ribes* Fruit72

5.2.3 Structure elucidation of the vasicine, vasicinone and embelin72

5.2.4 *In vitro* testing of the antiplasmodial activity of vasicine, vasicinone, embelin73

5.2.4.1 *Schizont maturation inhibition assay*73

5.2.4.2 *Plasmodium falciparum lactate dehydrogenase inhibition assay*73

5.2.5 *In vivo* testing of the antiplasmodial activity of vasicine, vasicinone, embelin73

5.2.5.1 *Introduction*73

5.2.5.2 *Experimental*75

5.3 RESULTS AND DISCUSSION75

5.3.1 Bioactivity guided fractionation and isolation of active principle/s from the methanolic extract of the *A. zeylanica* leaf and *E. ribes* fruit75

5.3.1.1 *Fractionation of the methanolic extract*76

5.3.1.2 *Isolation of vasicine and vasicinone*77

5.3.1.3 *Isolation of embelin*77

5.3.1.4 *Spectral details of vasicine*78

5.3.1.5 *Spectral details of embelin*84

5.3.2 *In vitro* testing of the antiplasmodial activity of vasicine, vasicinone, embelin86

5.3.3 *In vivo* testing of the antiplasmodial activity of vasicine, vasicinone, embelin86

5.4 CONCLUSION88

REFERENCES88

CHAPTER 6

Effect of vasicine, vasicinone and embelin on some important targets of *Plasmodium falciparum*

6.1 INTRODUCTION91
6.2 EFFECT OF VASICINE, VASICINONE AND EMBELIN ON SOME IMPORTANT TARGETS OF PLASMODIUM FALCIPARUM

6.2.1 Effect of vasicine, vasicinone and embelin on heme

6.2.1.1 Effect of vasicine, vasicinone and embelin on hemozoin formation inhibition

6.2.1.2 Drug-Heme Interaction Assay

6.2.1.3 GSH-dependent heme degradation, and its inhibition by clotrimazole and embelin

6.2.1.4 Conclusion

6.2.2 Effect of vasicine, vasicinone and embelin on fatty acid biosynthesis (FAB) inhibition

6.2.2.1 Introduction

6.2.2.2 Materials and Methods

6.2.2.3 Results and Discussion

6.2.2.4 Conclusion

6.2.3 Effect of vasicine, vasicinone and embelin on protein kinase inhibition

6.2.3.1 Introduction

6.2.3.2 Materials and Methods

6.2.3.3 Results

6.2.4 Effect of vasicine, vasicinone and embelin on plasmepsin II and IV

6.2.4.1 Introduction

6.2.4.2 Materials and methods

6.2.4.3 Results and discussion

6.2.5 Effect of vasicine, vasicinone and embelin on histidine rich protein-2 (HRP-2)

6.2.5.1 Introduction

6.2.5.2 Materials and methods

6.2.5.3 Results and discussion

6.2.6 Effect of vasicine, vasicinone and embelin on invasion of red blood cells

6.2.6.1 Introduction

6.2.6.2 Materials and methods

6.2.6.3 Results and discussion

6.3 SUMMERISED DISCUSSION

6.4 CONCLUSION

REFERENCES
CHAPTER 7
Synergistic Evaluation of Antiplasmodial Compounds In Vitro

7.1 INTRODUCTION 130
7.2 DEFINING AND PROVING SYNERGY 131
 7.2.1 Construction of isoboles 132
 7.2.2 Interpretation of isobolograms 132
7.3 MATERIALS AND METHODS 134
 7.3.1 Experimental protocol 134
 7.3.2 Sample preparation 134
 7.3.3 Data analysis 134
7.4. RESULTS AND DISCUSSION 135
REFERENCES 138

CHAPTER 8
TLC Densitometric Quantification of the vasicine, vasicinone
and embelin from Adhatoda zeylanica leaves and Embelia ribes fruits

8.1 INTRODUCTION 140
8.2 EXPERIMENTAL 140
 8.2.1 Chemicals 140
 8.2.2 Apparatus 140
 8.2.3 Plant material collection and authentication 141
 8.2.4 TLC analysis of Adhatoda zeylanica leaves
 8.2.4.1 TLC fingerprint profiling 141
 8.2.4.2 Estimation of vasicine and vasicinone using TLC
densitometric method 142
 8.2.4.3 Method validation 143
 8.2.5 TLC analysis of Embelia ribes fruit
 8.2.5.1 TLC fingerprint profiling 143
 8.2.5.2 Estimation of embelin using TLC densitometric method 144
 8.2.5.3 Method validation 145
8.3. RESULTS AND DISCUSSION 145
 8.3.1 TLC fingerprint profiling of Adhatoda zeylanica leaves 145
 8.3.2 Quantification of biomarker vasicine and vasicinone 146
 8.3.3 TLC fingerprint profiling of Embelia ribes fruits 149
 8.3.4 Quantification of biomarker embelin 150
8.4 CONCLUSION

CHAPTER 9
Summary and Conclusion

9.1 INTRODUCTION

9.2 PRELIMINARY ANTIPLASMODIAL SCREENING OF SELECTED MEDICINAL PLANTS FOR ANTIPLASMODIAL ACTIVITY

9.3 BIOACTIVITY GUIDED ISOLATION OF ANTIPLASMODIAL PRINCIPLE/S FROM METHANOLIC EXTRACT OF ADHATODA ZEYLANICA LEAF AND EMBELIA RIBES FRUIT

9.4 EVALUATION OF THE ISOLATED COMPOUNDS FOR ANTIPLASMODIAL ACTIVITY

9.5 EFFECT OF VASICINE, VASICINONE AND EMBELIN ON SOME IMPORTANT TARGETS OF PLASMODIUM FALCIPARUM

9.5.1 Effect of vasicine, vasicinone and embelin on parasite invasion of red blood cells

9.5.2 Effect of vasicine, vasicinone and embelin on hemozoin formation inhibition

9.5.3 Heme-embelin interaction assay

9.5.4 Effect of embelin on GSH (Glutathione reductase)-dependent heme degradation

9.5.5 Effect of vasicine, vasicinone and embelin on Plasmodium fatty acid biosynthesis (FAB) inhibition

9.5.6 Effect of vasicine, vasicinone and embelin on Plasmodium protein kinase inhibition

9.5.7 Effect of vasicine, vasicinone and embelin on plasmepsin inhibition

9.5.8 Effect of vasicine, vasicinone and embelin on Histidine rich protein–2 (HRP-2) inhibition

9.6 SYNERGISTIC EVALUATION OF ANTIPLASMODIAL COMPOUNDS IN VITRO

9.7 QUANTIFICATION OF VASICINE AND VASICINONE IN THE LEAF OF ADHATODA ZEYLANICA LEAF AND EMBELIN IN THE FRUIT OF EMBELIA RIBES

9.7 CONCLUSION

REFERENCES