Table of Contents

<table>
<thead>
<tr>
<th>Declaration</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Approval page</td>
<td>vi</td>
</tr>
<tr>
<td>Originality Report Certificate</td>
<td>vii</td>
</tr>
<tr>
<td>Ph. D. Thesis Non-Exclusive License to GTU</td>
<td>ix</td>
</tr>
<tr>
<td>Thesis Approval Form</td>
<td>xi</td>
</tr>
<tr>
<td>Abstract</td>
<td>xii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>xiii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Abbreviation</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xxiii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xxiv</td>
</tr>
<tr>
<td>References</td>
<td>xxv</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Motivation
1.2 Background
1.3 Boundary conditions
1.4 The Constraints
1.5 Original contribution by the thesis
1.6 Research objectives
1.7 Structure of the Thesis

2. LITERATURE SURVEY AND PROBLEM IDENTIFICATION

2.1 Review of research work
2.2 Research gap
2.3 Research Methodology
2.4 Definition of problem
3. COMPUTATION OF OVERALL EQUIPMENT EFFECTIVENESS FOR CONNECTING ROD MANUFACTURING OPERATIONS

3.1 Introduction
3.2 Review of other research
3.3 Objectives of OEE
3.4 Implementation
3.5 OEE factors and Computation sheet
3.6 Analysis
3.7 Results and discussion
3.8 Limitations for using OEE system
3.9 Summary

4. IMPLEMENTATION OF BUSH BORING CHAMFER TO AVOID MANUAL DEBURRING IN CONNECTING ROD: A KAIZEN APPROACH

4.1 Introduction
4.2 Literature Review
4.3 Research Methodology
4.4 Problem Statement
4.5 Kaizen Sheet
4.6 Feasibility of Proposed solution
4.7 Concluding remarks

5. CONTROL VARIATION IN END FLOAT PARAMETER WITH THE APPLICATION OF SIX SIGMA TOOLS

5.1 Introduction
5.2 Literature Review
5.3 Six Sigma frame work
5.4 Problem Statement
 5.4.1 Meaning of End Float
 5.4.2 Computation sheet of End Float
5.5 DMAIC
5.5.1 Define
5.5.2 Measure
5.5.3 Analyze
5.5.4 Improve
5.5.5 Control
5.6 Return on Quality
5.7 Conclusion

6. QUALITY ASSURANCE IN AXIAL ALIGNMENT (BEND AND TWIST) OF CONNECTING ROD

6.1 Introduction
6.2 Theoretical background
6.3 Bend and Twist of connecting rod and its measurement methods
 6.3.1 Method 1 : Measurement with two pins
 6.3.2 Method 2 : Measurement with V block
 6.3.3 Method 3 : Measurement with Co-ordinate Measuring Machine
 6.3.4 Method 4 : Measurement with Special Purpose Gauge
6.4 Interpretation of readings and proposed action plan
6.5 Process Capability Report
6.6 Discussion of implemented action
6.7 Points to be considered while conducting SPC analysis
6.8 Conclusion

7. EXAMINING THE INFLUENCE OF TEMPERATURE VARIATION ON THE DIMENSIONAL VARIABILITY OF CONNECTING ROD DURING MANUFACTURING

7.1 Introduction
7.2 Literature Review
7.3 Problem Statement
7.4 Readings at various temperatures
7.5 Proposed solutions
7.6 Conclusion

8. SOLVING THE PROBLEM OF BIG END BORE DIAMETER VARIATION

8.1 Introduction
8.2 Literature Review
8.3 The Problem Statement
8.4 Measurement report
8.5 Analysis of brainstorming report
8.6 Fishbone diagram
8.7 Discussion of proposed action plan
 8.7.1 P-PAP Type 1
 8.7.2 P-PAP Type 2
 8.7.3 Gauge R and R study (MSA)
 8.7.4 STAR technique
 8.7.5 Patrol Inspection and Dock Inspection
 8.7.6 First Article Inspection
8.8 FMEA: Failure Mode and Effects Analysis
8.9 Data collection
8.10 Analysis phase
 8.10.1 First iteration
 8.10.2 Second iteration
 8.10.3 Third iteration
 8.10.4 Fourth iteration
8.11 Process study capability report compilation
8.12 Implemented action plan
8.13 Conclusion

9. COMPUTATION OF PERFORMANCE EXCELLENCE

9.1 Performance Excellence parameters
9.2 Graphical representation of performance
9.3 Objectives Achieved
9.4 Conclusion
9.5 Future Scope

10. REFERENCES