LIST OF FIGURES

Figure 1.1: General scenario of consideration of soil structure interaction effect and wave propagation...05
Figure 1.2: Kinematic and Inertial interaction analysis (Kramer, 1996).................................07
Figure 1.3: Single degree of freedom (SDOF) fixed at the base and connected at the (fixed) base through a rotational spring (Gazetas and Mylonakis in 2000)..09
Figure 1.4: Damages during past earthquakes..12
Figure 1.5: Collapse of Shawa bridge during the 1964 Niigata earthquake (Takata et.al, 1965)....13
Figure 1.6: Pile failures during earthquake...15
Figure 1.7: Tilted HMT building during the 1964 Niigata earthquake (Madhubhushi, 2004)......16
Figure 1.8: Collapsed 2-Storey building (Madhubhushi, 2004)..16
Figure 2.1: Structure of the soil strata based on cone model (Wolf 1985)..............................25
Figure 2.2: Physical model of Soil Structure Interaction (Wolf, 1985).................................28
Figure 2.3: Experimental set up of soil structure interaction for different conditions (Hosseinzadeh, 2009)...30
Figure 2.4: Nonlinear Winkler (p-y) model (Tahghighi and Konagai, 2007).......................33
Figure 2.5: Methodology Winkler (p-y) model (Tahghighi and Konagai, 2007).................33
Figure 2.6: Result comparison of Winkler (p-y) model, (Tahghighi and Konagai, 2007)........35
Figure 2.7: Base shear comparison for Structures with fixed base, with shallow foundation and floating (friction) piles..39
Figure 3.1: Drucker-Prager failure surface (Konagai, 2007)...50
Figure 3.2: Parametric representation of Drucker-Prager material model.............................50
Figure 3.3: Incremental method..58
Figure 3.4: Standard Newton-Raphson (NR) method..60
Figure 3.5: Combination of Newton-Raphson and incremental methods.............................60
Figure 3.6: Details of interface element..63
Figure 3.7: The traction vector t working on surface Γ is decoupled into t_N and T_t...........64
Figure 3.8: Interface element representation in specified state, with respect to the initial position of x_1', y_1'..67
Figure 3.9: Schematic representation of a viscous boundary..74
Figure 3.10: Flow procedure for DSSI problem..77
Figure 3.11: Details of the part A..77
Figure 3.12: Details of the Finite Element model for validation..79
Figure 3.13: Time history displacement of the superstructure at top and bottom location

Figure 3.14: Validation of Storey wise displacement observed during 1940 El Centro ground motion

Figure 3.15: Validation of Inter storey drift during 1940 El Centro ground motion

Figure 4.1: Details of finite element model piles and (b) FFE model

Figure 4.2: Acceleration time history of the 2001 Bhuj ground motion (PGA = 0.31g)

Figure 4.3: General finite element model for G + 10 building for DSSI

Figure 4.4: Concept of equivalent pier method

Figure 4.5: Different trial configurations for Equivalent pier considered in the present study

Figure 4.6: Cross-coupling between horizontal and rocking modes of oscillation (Gazzata, 1991)

Figure 4.7: Piled raft layout and details of FE model of the pile

Figure 4.8: Finite element model for different EPM configuration

Figure 4.9: Displacement history for superstructure

Figure 4.10: Displacement history in foundation system

Figure 4.11: Response for G+10 building under dynamic loading for fixed base and SSI condition

Figure 4.12: Displacement history of superstructure during dynamic loading for General asymmetrical pile layout

Figure 4.13: Displacement history of superstructure in X-Direction during dynamic loading for an EPM1 configuration

Figure 4.14: Displacement history of superstructure in Y-Direction for EPM1

Figure 4.15: Displacement history of superstructure in Z-Direction for an EPM1

Figure 4.16: Displacement history of superstructure in X-Direction for an EPM2 configuration

Figure 4.17: Displacement history of superstructure in X-Direction for an EPM2 configuration

Figure 4.18: Displacement history of superstructure in Z-Direction for an EPM2 configuration

Figure 4.19: Displacement history of superstructure in X-Direction for an EPM3 configuration

Figure 4.20: Displacement history of superstructure in Y-Direction for an EPM3 configuration

Figure 4.21: Displacement history of superstructure in Z-Direction for an EPM3

Figure 4.22: Displacement history of superstructure in X-Direction during dynamic loading for an EPM3 configuration

Figure 4.23: Displacement history of superstructure in Y-Direction during dynamic loading for an EPM4 configuration

Figure 4.24: Displacement history of superstructure in Z-Direction during dynamic loading for an EPM4 configuration
Figure 4.25: Comparative time history displacement for different EPM configuration in X-direction at ground floor……………………………………………………………………………….112
Figure 4.26: Comparative time history displacement for different EPM configuration in Y-direction at ground floor……………………………………………………………………………….113
Figure 4.27: Comparative time history displacement for different EPM configuration in Z-direction at ground floor……………………………………………………………………………….114
Figure 4.28: Comparative time history displacement for different EPM configuration in X-direction at mid height of building……………………………………………………………………………….115
Figure 4.29: Comparative time history displacement for different EPM configuration in Y-direction at mid height of building……………………………………………………………………………….116
Figure 4.30: Comparative time history displacement for different EPM configuration in Z-direction at mid height of building……………………………………………………………………………….117
Figure 4.31: Comparative time history displacement for different EPM configuration in X-direction at top of building……………………………………………………………………………….118
Figure 4.32: Comparative time history displacement for different EPM configuration in Y-direction at top of building……………………………………………………………………………….119
Figure 4.33: Comparative time history displacement for different EPM configuration in Z-direction at top of building……………………………………………………………………………….120
Figure 4.34: Response comparison at different height of building for various EPM configurations in X-direction……………………………………………………………………………….121
Figure 4.35: Response comparison at different height of building for various EPM configurations in Y-direction……………………………………………………………………………….122
Figure 4.36: Floor wise response comparison for different EPM configurations in Z-direction…………………………………………………………………………………………………….123
Figure 4.37: Numerical cost for different EPM configuration…….124
Figure 5.1: Generation of torsional moment in asymmetric structures during seismic excitation……128
Figure 5.2: Classification of buildings : (a) Simple, and (b), (c) Complex…….131
Figure 5.3: Plan shapes of buildings (Murthy, 2013)…….132
Figure 5.4: Different trial configurations for Equivalent pier for C-shape building…….133
Figure 5.5: Different trial configurations for Equivalent pier for T-shape building…….133
Figure 5.6: Acceleration time history of the 2001 Bhuj ground motion (PGA = 0.31g) ……………………..139
Figure 5.7: Finite element model for T-shape G+10 building for DSSI for General pile layout……………..140
Figure 5.8: Finite element model for C-shape G+10 building for DSSI for EPM1……………………………..140
Figure 5.9: Finite element model for T-shape G+10 building for DSSI for EPM1 Meshed model…
Figure 5.10: Finite element model for T-shape G+10 building for DSSI for EPM2……
Figure 5.11: Finite element model for C-shape G+10 building for DSSI for EPM1……
Figure 5.12: Finite element model for C-shape G+10 building for DSSI for EPM2……
Figure 5.13: Response Location of superstructure………………………………………………
Figure 5.14: Time history displacement at various locations in X direction for C-Shape building……
Figure 5.15: Time history displacements at various locations in Y direction for C-Shape building……
Figure 5.16: The time history displacements at various locations in Z direction for C-Shape building…
Figure 5.17: The time history displacements at various locations in X direction for T-Shape building…
Figure 5.18: The time history displacements at various locations in Y direction for T-Shape building…
Figure 5.19: The time history displacements at various locations in Z direction for T-Shape building…
Figure 5.20: The storey wise time history displacements at critical corner in X direction for C-Shape building…………………………………………………………………………..
Figure 5.21: The storey wise time history displacements at critical corner in Y direction for C-Shape building……………………………………………………………………………………………………
Figure 5.22: The storey wise time history displacements at critical corner in X direction for C-Shape building……………………………………………………………………………………………………
Figure 5.23: The storey wise time history displacements at critical corner in X direction for T-Shape building……………………………………………………………………………………………………
Figure 5.24: The storey wise time history displacements at critical corner in Y direction for T-Shape building……………………………………………………………………………………………………
Figure 5.25: The storey wise time history displacements at critical corner in Z direction for T-Shape building……………………………………………………………………………………………………
Figure 5.26: Response location of pile settlement for C and T shape building……………………
Figure 5.27: Time history pile displacement for C shape building for general pile layout……
Figure 5.28: Time history pile settlement for C shape building for general pile layout……
Figure 5.29: Time history pile lateral displacement of pile for T shape building for general pile layout...
Figure 5.30: Time history pile settlement for C shape building for general pile layout……
Figure 5.31: Time history displacement in X-direction of raft for different asymmetrical shapes for general pile layout at critical corner……………………………………………………………………
Figure 5.32: Time history, displacement in Y-direction of raft for different asymmetrical shapes for general pile layout at critical corner……………………………………………………………………
Figure 5.33: Time history settlement of raft for different asymmetrical shapes for general pile layout at critical corner…………………………………………………………………………………………
Figure 5.34: The time history displacements at top storey in X direction of C Shape building at critical corner..154

Figure 5.35: The time history displacements at top storey in Y direction for C-Shape building at critical corner..155

Figure 5.36: The time history displacements at top storey in Z direction for C-Shape building at critical corner..155

Figure 5.37: The time history displacements at top storey in X direction for T-Shape building at critical corner..156

Figure 5.38: The time history displacements at top storey in Y direction for T-Shape building at critical corner..156

Figure 5.39: The time history displacements at top storey in Z direction for T-Shape building at critical corner..157

Figure 5.40: Response comparison for various configurations in X direction for C-Shape building..157

Figure 5.41: Response comparison for various configurations in Y direction for C-Shape building..158

Figure 5.42: Response comparison for various configurations in Z direction for C-Shape building..158

Figure 5.43: Storey wise response comparison for various configurations in X direction for T-Shape building..159

Figure 5.44: Storey wise response comparison for various configurations in Y direction for T-Shape building..159

Figure 5.45: Storey wise response comparison for various configurations in Z direction for T-Shape building..160

Figure 5.46: Comparative settlement profile of the pile and the pier for C shape pile layout at different location..160

Figure 5.47: Comparative settlement profile of the pile and the pier for T shape pile layout at different location..161

Figure 5.48: Comparative lateral displacement profile of the pile and the pier for C shape pile layout at different location..162

Figure 5.49: Comparative lateral displacement profile of the pile and the pier for T shape pile layout at different location..163

Figure 5.50: Stress profile of raft at critical corner for different configurations of T shape layout..164

V
Figure 5.51: Stress profile at top of pile/pier of T shape layout...165
Figure 5.52: Stress profile at centre of pile/pier of T shape layout...166
Figure 5.53: Stress profile at top of pile/pier of T shape layout...166
Figure 5.54: Numerical assessment for L, C and T shape building..169
Figure 6.1: Finite element model for C-shape G+10 building for DSSI system...176
Figure 6.2: Displacement time history of various soil types in X direction of C-Shape building at the top storey...178
Figure 6.3: Displacement time history of various soil types in Y direction of C-Shape building at the top storey...179
Figure 6.4: Displacement time history of various soil types in Z direction of C-Shape building at the top storey...179
Figure 6.5: Displacement time history of various soil types in X direction at central pile head...180
Figure 6.6: Displacement time history of various soil types in Y direction at central pile head..............................180
Figure 6.7: Displacement time history of various soil types in Z direction at central pile head........181
Figure 6.8: Displacement time history of various soil types in Y direction at central pile tip........181
Figure 6.9: Displacement time history of various soil types in Y direction at central pile tip........182
Figure 6.10: Displacement time history of various soil types in Z direction at central pile tip........182
Figure 6.11: Details of the of the March 24, 1995 Chamba Earthquake (NE) ..183
Figure 6.12: Details of the of the Mar 29, 1995 Uttarkashi Earthquake (NW) ..184
Figure 6.13: Details of the of the Jan 25, 2001 Bhuj Earthquake (NE) ...184
Figure 6.14: Top storey displacement of C shape building in X direction under various earthquakes...186
Figure 6.15: Top storey displacement of C shape building in Y direction under various earthquakes...186
Figure 6.16: Top storey displacement of C shape building in X direction under various earthquakes...187
Figure 6.17: Pile failure under later loading..188
Figure 6.18: Floor wise displacement for different L/D ratios for respective soil type.........................190

LIST OF TABLES

Table 1.1: Summary of case histories on pile foundation performance in past earthquakes...............17
Table 2.1: Comparison between analytical and experimental result for frequency30
Table 2.2: Comparison between analytical and experimental result for Damping ratio (%)30
Table 2.3: Parametric study of interaction behavior by various researchers ...39
Table 2.4: Simple rules for plan layouts of a seismic buildings (Dowrick, 2003)42
Table 2.5: Contribution of different researchers in DSSI analysis for asymmetrical structures43
Table 3.1: Element constraint matrix C^* and vector f for three interface states68
Table 3.2: Decision matrix for selecting a new state during iteration within the load step70
Table 3.3: Specified values of constrained load vector ..70
Table 3.4: Site subsoil classification as per International Building Code (IBC) 200972
Table 3.5: Earthquake details used for validation of the present study ..79
Table 4.1: Details of the analysis and structural dimensions considered for the present analysis87
Table 4.2: Engineering properties of the soil layer considered for FE mode87
Table 4.3: Details of an equivalent pier for the configurations EPM 1, EPM 2, EPM 3, EPM 494
Table 4.4: Quantitative metric for each EPM configuration ...121
Table 4.5: Peak response at the top of superstructure for different EPM configuration122
Table 4.6: Percentage deviation in response for various EPM configuration w.r.t. the general pile layout ...122
Table 5.1: Details of the configuration considered for the study ..134
Table 5.2: Characteristics of adopted model for the study ...135
Table 5.3: Properties of the soil domain considered for the analysis ..136
Table 5.4: Quantitative metric for each EPM configuration ...167
Table 5.5: Peak response at the top of superstructure for different EPM configuration167
Table 5.6: Percentage deviation in response for various EPM configuration w.r.t. the general pile layout ...167
Table 5.7: Maximum Raft settlement and lateral displacement at critical location168
Table 5.8: Maximum pile settlement and lateral displacement at different location for different asymmetry ...168
Table 6.1: Presumptive bearing capacity values as per IS 1904-1978 ...177
Table 6.2: Engineering properties of the soil considered for parametric study177
Table 6.3: Details of Earthquake considered for the present study ..185
Table 6.4: Peak response at the top of superstructure and the foundation system187
Table 6.5: Details of L/D ratio considered for the study ...189
LIST OF NOTATIONS

C: Cohesion

$[C]$: Damping matrix

E: Modulus of elasticity

E_{str}: Modulus of elasticity of the structural material

f: Natural frequency of fixed base structure

F_s: Total shear force

F_n: Total normal force

F_x: Forces in x direction

F_y: Forces in y direction

$\{F_v\}$: Force vector

G: Shear modulus of the soil

G_{max}: Largest value of the shear modulus

k: Stiffness of the structure

k_s: Shear spring stiffness

k_n: Normal spring stiffness

K: Bulk modulus

$[K]$: Stiffness matrix

K_h: Horizontal stiffness coefficient of the subsoil

K_r: Rocking stiffness coefficient of the subsoil

K_{ss}: Soil-structure relative rigidity

m: Mass of the structure

$[M]$: Mass matrix

T: Natural period of fixed-base structure

$T_{~}$: Natural period of soil-structure system

T_n: Normal traction at the model boundaries

T_s: Shear traction at the model boundaries

u: Lateral displacement at the top of the structure due to structural distortion

u_n: Incremental relative displacement vector in normal direction

u_s: Incremental relative displacement vector in shear direction

$\{u\}$: Nodal displacement

$\{\dot{u}\}$: Nodal velocity
\{\ddot{u}\} : Nodal acceleration
\Delta t : Time-step
\mu : Poisson’s ratio of the soil
\varnothing : Friction angle