CONTENTS

Title page	1
Approval of supervisor and external examiner	2
Certificate by the supervisor	3
Dedication	4
Acknowledgements	5
Declaration by the student	6
List of publications based on the present work	7
List of figures	8
List of tables	14
List of symbols	18
List of abbreviations	19
Abstract and keywords	20
Contents	21

Chapter 1 Introduction

1.1. Hybrid Polymers	25
1.2. Emulsion Polymerization	26
1.3. Industrial Emulsion Polymerization	27
1.4. Objective of Research Work	28
1.5. Organization of Research Work	29

Chapter 2 Literature survey

2.1. Epoxy Resin	30
2.2. Epoxy Resin In surface Coating	32
2.3. Waterborne Epoxy Resin	33
2.4. Emulsion Polymerization	34
2.4.1. Components in Emulsion Polymerization	36
2.4.2. Emulsion Polymerization Stages	37
Contents

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Hybrid Epoxy resin Emulsion with Different Curing Agents</th>
<th>171-208</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Introduction</td>
<td></td>
<td>171</td>
</tr>
<tr>
<td>5.2. Objective</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>5.3. Experimental Methodology</td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>5.3.1. Analysis methods</td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>5.3.2. Materials</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>5.3.4. Specification of Raw Materials</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>5.3.3. Experimental Procedure</td>
<td></td>
<td>186</td>
</tr>
<tr>
<td>5.4 Characterization</td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>5.5. Result & Discussion</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>5.6. Conclusion</td>
<td></td>
<td>208</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Hybrid Epoxy Emulsion with Nano Particles</th>
<th>209-242</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Introduction</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>6.2. Objective</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>6.3. Experimental Methodology</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>6.3.2. Specification of silica oxide powder</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>6.3.4. Experimental Procedure</td>
<td></td>
<td>217</td>
</tr>
<tr>
<td>6.4. Characterization</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>6.5. Result & Discussion</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td>6.6. Conclusion</td>
<td></td>
<td>242</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Microwave Assisted Hybrid Emulsion Polymerization</th>
<th>243-271</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Introduction</td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>7.2. Objective</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>7.3. Experimental Methodology</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>7.3.1. Experimental Procedure</td>
<td></td>
<td>253</td>
</tr>
<tr>
<td>7.4. Characterization</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>7.5. Result & Discussion</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>7.6. Conclusion</td>
<td></td>
<td>271</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Comparative Study of Hybrid Epoxy Resin Emulsion</th>
<th>272-293</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Introduction</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td>8.2. Objective</td>
<td></td>
<td>276</td>
</tr>
<tr>
<td>8.3. Experimental Methodology</td>
<td></td>
<td>276</td>
</tr>
<tr>
<td>8.3.1. Materials</td>
<td></td>
<td>276</td>
</tr>
<tr>
<td>8.4. Characterization</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>8.4.1. Characterization of DGEBA Epoxy resin</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>8.5. Result & Discussion</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>8.6. Conclusion</td>
<td></td>
<td>293</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Electrochemical Impedance Spectroscopy Study of Hybrid Epoxy Resin Coating</th>
<th>294-336</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Introduction</td>
<td></td>
<td>294</td>
</tr>
<tr>
<td>9.2. Objective</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>9.3. Experimental Methodology</td>
<td></td>
<td>302</td>
</tr>
<tr>
<td>9.3.1. Preparation of specimen for testing</td>
<td></td>
<td>302</td>
</tr>
<tr>
<td>9.3.2. Electrochemical Impedance Tests</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>9.3.3. Experimental assembly for AC impedance spectroscopy of polymer coated metal</td>
<td></td>
<td>304</td>
</tr>
<tr>
<td>9.3.4. Model for simulation and analysis of EIS data for hybrid coatings</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>9.3.5. DC electrochemical polarization study</td>
<td></td>
<td>306</td>
</tr>
<tr>
<td>9.4. Characterization</td>
<td></td>
<td>308</td>
</tr>
<tr>
<td>9.5. Result & Discussion</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>9.6. Conclusion</td>
<td></td>
<td>336</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Summary and Conclusions</th>
<th>337-343</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Scope for further work</th>
<th>344</th>
</tr>
</thead>
</table>

| References | | 345-385 |

| Synopsis | | |

Synthesis of Hybrid Epoxy Resin Emulsions for Industrial Coating Applications
Page 24