Contents

Acknowledgements

Abbreviation ... i-iii

Chapter 1: Introduction .. 1-5

Chapter 2: Review of Literature ... 6-37

2.1. Tuberculosis ... 6-10
2.1.1. The Mycobacterium complex
2.1.2. Unique feature of M. tuberculosis

2.2. Pathogenesis of M. tuberculosis ... 10-12
 Stage 1. Initial uptake of Bacteria
 Stage 2. Secondary tuberculosis infection
 Stage 3. Dormancy

2.3. Immune response to M. tuberculosis ... 12-19
 2.3.1. Macrophages
 2.3.2. Cellular response
 2.3.3. Humoral Response
 2.3.4. Cyokines and bactericidal products
 2.3.5. Proinflammatory cytokines
 2.3.6. Anti-inflammatory cytokines
 2.3.7. Chemokines

2.4. Models for measuring Mycobacterial pathogenesis ... 19-21

2.5. Mycobacterial persistence .. 21-25
 2.5.1. Characteristic features of persistent infection
2.6. Model systems of persistent infection .. 25-27
 2.6.1. In vitro models of *M. tuberculosis* persistence
 2.6.1.1. The Wayne non-replicating persistence model
 2.6.1.2. The nutrient starvation model
 2.6.2. In vivo models
 2.6.2.1. Cornell mouse model
 2.6.2.2. Low-dose murine model

2.7. Proteins implicated in mycobacterial persistence .. 28-33
 2.7.1. Respiratory Proteins
 2.7.2. Stress-response and general metabolic proteins
 2.7.3. Proteins involved in fatty acid metabolism
 2.7.4. Regulatory proteins implicated in mycobacterial persistence
 2.7.4.1. Transcription factors
 2.7.4.2. Two-component signal transduction systems
 2.7.4.3. Sigma factors
 2.7.4.4. WhiB3
 2.7.4.5. PE/PE-PGRS proteins

2.8. Reactivation .. 33-37
 2.8.1. Is the transition to and from dormancy active, programmed process?
 2.8.2. Resuscitation Promoting Factors
 2.8.3. Distribution of Resuscitation Promoting Factors
 2.8.4. Resuscitation Promoting Factors of *Mycobacterium tuberculosis*

Chapter 3 Materials and Methods ... 38-75

3.1. Materials ... 38-42
 3.1.1. Bacterial strains, Plasmids and Markers
 3.1.2. Culture Media and Buffers
 3.1.3. Chemicals and Biochemicals
 3.1.4. Water
 3.1.5. Primers
3.2. General Methods

3.2.1. General Methods for Recombinant DNA

3.2.1.1. PCR amplification

3.2.1.2. Agarose Gel Electrophoresis

3.2.1.3. Digestion of DNA using Restriction Endonucleases

3.2.1.4. Quantitation of DNA

3.2.1.5. Methods for Cloning of ORFs in different vectors

3.2.1.5.1. PCR amplification as in section

3.2.1.5.2. Agarose Gel Electrophoresis as in section

3.2.1.5.3. Digestion of DNA using Restriction Endonucleases as in section

3.2.1.5.4. Dephosphorylation of vector DNA

3.2.1.5.5. Ligation

3.2.1.5.6. Transformation of plasmid in *E. coli*

3.2.1.5.7. Isolation of plasmid DNA from *E. coli*

3.2.1.5.8. Nucleotide sequencing of Cloned Insert

3.2.1.6. Isolation of genomic DNA from Mycobacteria

3.2.1.7. Isolation of plasmid DNA from Mycobacteria

3.2.1.8. Acid Fast Bacilli (AFB) staining

3.2.1.9. Electroporation of plasmid DNA in Mycobacteria

3.2.1.10 Rapid analysis of recombinant plasmids in *E. coli*

3.2.2. General methods for Protein Expression, Purification and Characterization

3.2.2.1. PCR amplification of *rpjC* and *rpjE* genes

3.2.2.2. Cloning of *rpj* genes in pET19b

3.2.2.3. Optimizing expression and solublization of protein

3.2.2.3.1. Induction of Proteins

3.2.2.3.2. Sample preparation for protein profile analysis

3.2.2.4. SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

3.2.2.5. Western blot analysis

3.2.2.6. Large scale purification of recombinant protein using His Bind Resin

3.2.3. General methods used for animal studies / *in vivo* studies

3.2.3.1. Animals

3.2.3.2. Inoculum preparation

3.2.3.3. Determination of bacillary load / CFU count
3.2.3.4. Histopathological study of kidney tissues

3.3. Standardization of methods for role of \textit{rpf} genes in \textit{in vitro} resuscitation of dormant mycobacteria

3.3.1. Standardization of an \textit{in vitro} model of Extended Stationary Phase (ESP) of non-culturable state

3.3.1.1. Construction of recombinant \textit{M. bovis} BCG expressing firefly luciferase

3.3.1.2. Standardization of \textit{in vitro} conditions of non-culturable, Extended Stationary Phase (ESP) state

3.3.2. Study of \textit{in vitro} role of \textit{rpf} genes in resuscitation

3.3.2.1. Preparation of supernatant of \textit{M. luteus}

3.3.2.2. Preparation of recombinant protein RpfE

3.3.2.3. Standardization of Resuscitation assay

3.4. Methods for establishing role of \textit{rpjC} and \textit{rpjE} genes in \textit{in vivo} model of Persistent infection

3.4.1. Development of \textit{M. fortuitum} murine infection model

3.4.2. Construction of recombinant \textit{M. fortuitum} expressing \textit{rpjC} and \textit{rpjE} genes

3.4.2.1. Amplification of \textit{rpjC} and \textit{rpjE} genes

3.4.2.2. Cloning of \textit{rpjC} and \textit{rpjE} genes in pMV361

3.4.3. Validation of expression of \textit{rpj} genes in recombinant \textit{M. fortuitum}

3.4.3.1. RNA isolation from recombinant \textit{M. fortuitum} and quantitation by RT-PCR

3.4.3.2. Relative quantification of RNA by semi-quantitative RT-PCR

3.4.4. Infection of mice with recombinant \textit{M. fortuitum}

3.4.5. Drug susceptibility of recombinant \textit{M. fortuitum} at different stages of infection

3.4.5.1. Ciprofloxacin sensitivity of bacilli in kidney homogenate

3.4.6. Histopathological studies

3.4.7. Statistics

3.5. Methods for analysis and identification of differentially expressed proteins of \textit{M. bovis} BCG during Extended Stationary Phase and Resuscitated Phase

3.5.1. SDS-PAGE analysis

3.5.1.1. Sample preparation for protein analysis by SDS-PAGE

3.5.2. 2-Dimensional gel electrophoresis
3.5.2.1. Sample preparation for Two-dimensional (2-D gel) electrophoresis
3.5.2.2. Quantitative measurement of proteins
3.5.2.3. Fluorescence labeling of proteins with Cy Dyes for DIGE (Differential Gel Electrophoresis)
3.5.2.4. Sample rehydration
3.5.2.5. First dimension electrophoresis (Iso-electric focusing)
3.5.2.6. Second dimension separation (SDS-PAGE)
3.5.2.7. Image acquisition
3.5.2.8. Software analysis of differentially expressed proteins by DeCyder analysis
3.5.2.8.1. DeCyder analysis
3.5.2.8.2. Differential In Gel Analysis (DIA)
3.5.2.8.3. Biological Variation Analysis (BVA)
3.5.2.8.4. BVA normalization of spot volume and Statistical Analysis
3.5.2.8.5. Average ratio of spots
3.5.3. Post electrophoretic staining of gels
3.5.3.1. Silver staining
3.5.3.2. Colloidal Coomassie Brilliant Blue Staining
3.5.4.1. Protein identification and MS analysis
3.5.4.2. MS/MS analysis
3.5.5. Database searches

3.6. Methods for expression analysis of rpf genes in different physiological conditions

3.6.1. Design of reporter constructs to evaluate the expression of rpf genes in different physiological conditions
3.6.1.1. Amplification of promoters of rpf genes
3.6.1.2. Construction of pLL192 reporter constructs
3.6.2. Different physiological condition used for promoter analysis
3.6.3. Flow Cytometric Analysis
3.6.4. Validation of expression of rpf genes in different physiological condition
3.6.4.1. RNA isolation from different physiological condition and validation by Real time RT-PCR
Chapter 4 Results..76-117

4.1. Cloning, Expression and Purification of Recombinant Rpf Protein76-80

4.1.1. Amplification of rpfC (Rv1884c) and rpfE (Rv2450c)
4.1.1.1. Cloning of PCR Amplified Product in PCR 2.1 TOPO TA Cloning Vector
4.1.13. Nucleotide sequencing of rpf genes in PCR 2.1 TOPO Vector
4.1.2. Expression and Purification of Rpf Proteins
4.1.2.1. Purification of RpfC
4.1.2.2. Purification of RpfE
4.1.3. Western Blot analysis of purified RpfC and RpfE proteins

4.2. Role of rpf genes in in vitro resuscitation of dormant mycobacteria81-86

4.2.1. Extended Stationary Phase (ESP) of M. bovis BCG expressing firefly luciferase
4.2.2. Resuscitation Assay by Rpf protein

4.3. Role of rpfC and rpfE genes in in vivo model of Persistent infection87-95

4.3.1. Murine infection model exhibiting persistence and reactivation of M. fortuitum ATCC 6841
4.3.1.1. M. fortuitum Murine infection model
4.3.2. Construction of Recombinant M. fortuitum constitutively expressing rpf genes
4.3.2.1. Cloning of rpfC in mycobacterial expression vector
4.3.2.2. Cloning of rpfE in mycobacterial expression vector
4.3.2.3. Construction of Recombinant M. fortuitum
4.3.2.4. Expression analysis of rpfC and rpfE in Recombinant M. fortuitum by RT-PCR
4.3.3.1. Recombinant M. fortuitum in murine infection model
4.3.3.2. Drug susceptibility of M. fortuitum and Recombinant M. fortuitum at different stages of infection
4.3.3.3. Histopathology of kidney tissues at different stages of infection

4.4. Analysis and Identification of differentially expressed proteins of M. bovis BCG during Extended Stationary Phase and Resuscitated Phase96-111

4.4.1. SDS-PAGE analysis
4.4.2. 2-Dimensional gel electrophoresis DIGE (Differential gel electrophoresis)

4.4.2.1. Decyder analysis

4.4.2.1.1. Differential In-gel Analysis (DIA)

4.4.2.1.2. Biological Variation Analysis (BVA)

4.4.2.1.3. Average ratio of spots

4.4.2.1.4. Statistical analysis (Student’s t-test using the standardized log abundances)

4.4.2.2. Protein Spot Detection

4.4.2.3. Mass Spectrometric Analysis

4.4.2.4. Functional profiling of differentially expressed proteins

4.5. Analysis of expression of rpf genes in different physiological conditions......111-117

4.5.1. Cloning of upstream region of rpf genes in promoter probe vector

4.5.1.1. Amplification of promoter region

4.5.1.2. Cloning of upstream region in pLL192

4.5.1.3. Flow Cytometric analysis

 I. Hypoxia

 II. Nutrient starvation

 III. pH stress

4.5.2. Validation of the up-regulation of rpf genes in stress conditions by Real time RT-PCR

4.5.2.1. Relative quantification of mRNA by Real time RT-PCR

Chapter 5 Discussion...118-131

Chapter 6 Bibliography..132-154

Appendix..I-X