CHAPTER III

DESIGN OF THE STUDY
AND METHOD OF INVESTIGATION
CHAPTER – III

DESIGN OF THE STUDY AND METHOD OF INVESTIGATION

3.1 INTRODUCTION

This chapter gives a detailed description of the design of the study and selection of sample. Selection and nature of the sample used is discussed in detail. It also gives a brief description of the tools of investigation and criteria of their selection. The procedure adopted for collection of data, their classification, and scoring procedure are also discussed. Finally, the proposed statistical treatments of the data for testing the hypotheses that were formulated are explained.

3.2 DESIGN OF THE STUDY

"Choosing a design for a study basically involves selecting the most appropriate methods and techniques to solve the particular problem under investigation", says Anderson, Durston and Poole (1970).

The present investigation has been designed as a survey method and a descriptive study of the existing condition. A descriptive research is concerned with conditions of relationship that exits, opinions that are held, processes that are going on, effects that are evident or trends that are developing although it often considers past events and influences as they relate to current conditions (Best and Kahn 1986). Hence, the present investigation is a descriptive study of environmental awareness, attitudes and behaviour of secondary and higher secondary students in Tamil Nadu.
3.3 SELECTION OF THE VARIABLES

The review of studies presented in the previous chapter highlights the idea that environmental awareness is necessary for the students in order to find out the solution for the environmental problems and to improve the quality of human life on earth. Environmental education and extra-curricular environmental programmes are a powerful means of imparting environmental awareness among the students. Majority of the studies pointed out that the development of environmental awareness will improve the environmental attitudes among the students. Few studies indicate that there were significant changes in the attitudes and behaviour of the participants. So the investigator selected the following process variables (dependent variables) for the study.

(i) Environmental Awareness
(ii) Environmental Attitudes
(iii) Environmental Behaviour

Independent Variables Included in the Study

A survey of related literature revealed some studies where similar independent variables have been considered in relation to environmental awareness. **Shahnawaj (1990)** in a study on environmental awareness and attitudes of secondary and higher secondary students found that girls had significantly more awareness of the environment than the boys. **Mcilveene (1996)** in her study found that parent's level of education, occupational status, and participation in
environmental activities definitely influence the children’s perceptions of their environment.

Maiteny Paul (2000) in a conference on education for sustainable development, London said that views of nature are now changing and religious teachings being interpreted in new ways that are more supportive of nature. This, in turn, influences experiences, attitudes and behaviours. A related source of hope is the rising interest in spiritual matters as a possible non-material alternative for well being. If the trend increases, it could reduce consumptive pressures on the environment.

Various studies conducted by the researchers around the world have indicated that the environmental awareness, attitudes and behaviour are correlated with Gender, Age group, Socio-economic status, Locality and Medium of instruction. But in Indian conditions, community and religion also may influence the environmental awareness, attitudes and behaviour. So the researcher has taken community and religion as important variables for the study. In Tamil Nadu there are three types of schools, viz, Government, Government aided and Self financing. So the typology of the school has also been taken as a categorical variable. So the researcher has taken the following categorical variables (Independent variables) such as (a) Gender, (b) Age, (c) Class, (d) Medium of Instruction, (e) Types of Management, (f) Locality, (g) Socio-Economic Status, (h) Religion and (i) Community.
3.4 DEVELOPING THE INSTRUMENTS FOR THE STUDY

The primary methodological tools for the present study are:

(i) Environmental Awareness Scale developed by the investigator (2012).

(ii) Environmental Attitudes Scale developed by the investigator (2012).

(iii) Environmental Behaviour Scale developed by the investigator (2012).

(i) Environmental Awareness Scale

The Environmental Awareness scale includes the following sub categories or dimensions namely Global warming, Air pollution, Soil pollution, Water pollution, Conservation of energy and Conservation of forests. They deal with the wild life, environment, the relationship between man and animals, human activities, the present conditions of the environment and the conservation effect taken by the various agencies. After consulting with teachers, subject matter experts and environmentalists, the environmental awareness questionnaire has been developed. It consists of 30 items covering six dimensions of the environment. The items are of 5 point Likert scale, 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree or Disagree, 4 = Agree and 5 = Strongly Agree. The items were shown to the experts and as per their suggestions, they were modified. They were tried out with students to know whether they are easily understandable to the particular age group. The total score allotted for the environmental awareness test is 150. With no time restrictions, all the items in this test are of objective type.
The following six dimensions of the environmental awareness scale, namely Global Warming, Air pollution, Soil Pollution, Water Pollution, Conservation of Energy and Conservation of Forest are taken for the study.

- **Global Warming:** Global warming refers to an average increase in the earth's temperature which in turn causes change in climate, change in rainfall pattern, a rise in sea level and a wide range of impacts on plants, wild life and humans. Unlimited emission of green gases such as carbon dioxide is responsible for this warming. The sample items of the questions of the global warming dimension of the Environmental awareness scale are as follows:
 - Carbon dioxide gas can cause climate change and global warming.
 - Tree plantation is essential for the regulation of environmental temperature.

- **Air Pollution:** The contamination of air with smoke, dust and harmful gases is called air pollution. It is caused by natural sources such as volcanic eruptions, forest wild fires etc and man-made sources such as industries, factories, power plants etc. The sample items of the questions of the air pollution dimension of the Environmental awareness scale are as follows:
 - Our vehicles should be checked time to time for preventing air pollution.
 - Use of Lead-free petrol is desirable.
Soil Pollution: The contamination of soil with excess of chemicals, fertilizers, insecticides, herbicides, is known as soil pollution. It is caused due to soil erosion, deforestation, forest fire, excessive use of chemical fertilizers, pesticides etc. The sample items of the questions of the soil pollution dimension of the Environmental awareness scale are as follows.

★ Spray of synthetic fertilizers and pesticides should be banned.
★ Plastics are a non-bio-degradable waste that will cause soil pollution.

Water Pollution: The contamination of water with soluble sewage and industrial waste is called water pollution. The main sources of water pollution are sewage, agricultural discharge, thermal power plant, nuclear plant waste, etc. The sample items of the questions of the water pollution dimension of the Environmental awareness scale are as follows.

★ Leather and fertilizer industries are responsible for water pollution.
★ All should take active part in controlling water pollution.

Conservation of energy: Conservation of energy deals with the necessary steps involved in conserving the energy to maintain balance between available energy and their uses. The sample items of the questions of the conservation of energy dimension of the Environmental awareness scale are as follows.

★ Energy sources like coal, petrol etc should be used at large scale.
★ Use of solar energy is pollution free.
> **Conservation of forest:** Conservation of forest deals with the necessary steps involved to conserve the forest by preventing deforestation. The sample items of the questions of the conservation of forest dimension of the Environmental awareness scale are as follows.

- Deforestation is the main cause of soil erosion and flood.
- Rapid deforestation unbalances the rain-cycle of a place.

ii) Environmental Attitudes Scale

Environmentalism is at infancy in India. So far, there is no tool developed in India to measure the environmental attitudes of the students. A scale developed by Stephen R Kellert of USA has been used in the present study to measure the environmental attitude. As there is a lot of cultural differences between India and Western countries, the investigator modified the tool to suit the Indian students. This tool consists of 28 items about an individual's attitudes, preferences, and values pertaining to the environment. The items are of 5 point Likert scale, 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree or Disagree, 4 = Agree and 5 = Strongly Agree. The total score of this test is 140. All the items in this test are of objective type.

iii) Environmental Behaviour Scale

The usefulness of any programme is validated by the behaviour of the students. The investigator asked some students to write their behaviour with regard to the environment. She analysed the points written by the students and consulted the experts. On the basis of the items referred by the majority of the students and the
experts' opinion, the tool was designed. It consists of 15 items of 4 point Likert scale, 1 = Never, 2 = To a lesser level, 3 = To a moderate level and 4 = To a greater level. The total score of this test is 60.

3.5 SCORING PROCEDURE

Environmental Awareness Scale consists of 30 items using a 5-point Likert pertaining to six dimensions of an environment namely Global Warming, Air Pollution, Soil Pollution, Water Pollution, Conservation of Energy and Conservation of Forests.

In this scale, the items were worded positively as well as negatively. The positive items were credited with 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree and 5 = Strongly Agree. The scoring was reversed for those items which were worded negatively i.e., 1 = Strongly Agree, 2 = Agree, 3 = Neither Agree nor Disagree, 4 = Disagree and 5 = Strongly Disagree. The maximum possible score is 150. The sum of scores of all items for each participant was calculated. This score has been used for further analysis.

The Environmental Attitudes Scale consists of 28 items of 5 point Likert scale. The positive items were credited with 1 = Strongly Disagree, 2 = Disagree, 3 = Neither Agree nor Disagree, 4 = Agree and 5 = Strongly Agree. The scoring was reversed for those items which were worded negatively, i.e., 1 = Strongly Agree, 2 = Agree, 3 = Neither Agree nor Disagree, 4 = Disagree and 5 = Strongly Disagree. The maximum possible score is 140. The sum of scores of all items for each participant was calculated. This score has been used for further analysis.
The Environmental Behaviour Scale consists of 15 items using a 4 point Likert scale. The responses were credited with 1 = Never, 2 = To a lesser level, 3 = To a moderate level and 4 = To a greater level. In this scale, all items were worded positively. The maximum possible score is 60. The sum of scores of all items for each participant was calculated. This score has been used for further analysis.

3.6 PILOT STUDY AND ITEM ANALYSIS

The objectives of the pilot study in the construction of the test instruments are as follows:

➢ To determine the suitability of the various test items with regard to both their forms and content in measuring students' environmental awareness, environmental attitudes and environmental behaviour.

➢ To find out whether all the students understand the instructions given in the test instruments.

➢ To select the best items for the final study which would discriminate the best scores from the lower scores and which would bring out the difficulties of the students in responding to the questions.

The completed tests were subjected to a pilot study on a sample of 30 students. Sufficient time for all the testees to attempt every item was allowed in the pilot study. The immediate purpose of an item analysis is to determine the difficulty and discrimination indices of each item, to be included in the final study. The D-Index method suggested by Valette (1977) and Stanley et al. (1978) was followed in doing this item analysis because of its simplicity.
Determining Item Difficulty

Based on the scores obtained by the pupils in the pilot study tests, the high and the low groups were defined using 27 percent cutting point. The top 27 percent of the pupils formed the high group and the bottom 27 percent of the pupils formed the low group.

As the item analysis proceeds, four figures were recorded for each item.

- **H**: number of highs who answered correctly
- **L**: number of lows who answered correctly
- **H+L**: total number who answered correctly (success)
- **H-L**: how many more highs than lows answered correctly (discrimination)

Item wise analysis was made to find out the proportion of the pupils answered each items correctly in the high and the low groups, PH and PL. Using these values, the item difficulty level P was obtained by the formula.

\[P = \frac{PH + PL}{2} \]

Determining Item Discrimination

The item discrimination D was obtained by using the formula

\[D = (PH - PL) \]

Ebel (1979) is of the opinion that an item with the index of discrimination 0.35 and up can be considered a very good item, Lindeman and Merenda (1979)
observed “since the test maker should usually strive to achieve high discriminating power, most items should have difficulty levels between 0.40 and 0.60”. Taking into account of these facts, items having highest discrimination indices and difficulty levels between 0.40 and 0.60 were selected. The survived items were arranged according to their difficulty and discrimination indices.

Determining the Effectiveness of Distractors

In the test items which are of multiple-choice types, one further step was made in the item analysis namely inspecting the way each item distracter functioned. If an item contains a distracter, which attracted no one, not even the poorest testees, it is a non-functioning distracter. If a “wrong” distracter attracted more high than low scores, it is a malfunctioning distracter. Retaining such a distracter will actually harm the test. As non-functioning and malfunctioning distracters were not found in the analysis of all the items, there was no need to make any alterations in the distracters. The usable items thus selected were assembled in a final form.

3.7 ESTABLISHMENT OF RELIABILITY AND VALIDITY OF THE TEST INSTRUMENTS

There are two essential characteristics of a good measuring instrument, its reliability and validity. Reliability refers to the accuracy and internal consistency of the instrument and the validity refers to the degree to which the test actually measures which it purports to measure. This section deals with the reliability and validity of the test instruments developed for the study.
Validity Establishment

Validity of a test refers to the degree to which "the test actually measures what it purports to measure" (Anastasi, Anne, 1957). Validity is defined as, the extent to which the procedure actually accomplishes what it seeks to accomplish or measures what it seeks to measure. Thus it shows the degree of the attainment of the purpose of a test. Face validity concerns with what it appears to measure. Content validity is concerned with whether a measurement tool actually measures what it is supposed to measure (Bernard, 1995). The face validity of the present tool was established by the fact that they were constructed by methods suggested and practiced by eminent men in the field.

To ensure the content validity, the tools developed for measuring the environmental awareness, attitudes and behaviour were sent to a panel and jury. The panel of jury consisted of three experts. One was teacher teaching Environmental Science in a higher secondary school, one was an environmental officer in a Research Institute and another was a faculty in the Department of Education in a University. Each one of them was unaware of the other. The test instruments were sent to them and they were asked to review them according to the norms of the research project. They were asked to mark whether an item would measure the concept with which it was associated and to mark if the statement falls within the selected awareness domain. Only those questions that were considered by all reviewers to fit within the research were kept and all the others were eliminated. The final test instruments were prepared according to their suggestions.
Reliability

Reliability is to assess the consistency of results across items within a test. "The reliability of a test refers to the consistency of scores obtained by the same individuals on different occasions or with different sets of equivalent items" (Anastasi, Anne, 1970). According to Fox, reliability is referred to the accuracy of the data in the sense of their stability, and repeatability of precision. Thus it refers to the dependability or consistency of the measure provided by it. There are many ways to find the reliability. They are as follows:

1. Inter-Rater or Inter-Observer method.
2. Test – Retest method
3. Parallel – Forms method
4. Split Half method
5. Cronbach’s Alpha method etc,

Each method has its own advantage and disadvantages. In the last two methods, a single measurement instrument is administered to a group of people on one occasion to estimate reliability. In effect the reliability of the instrument is judged by estimating how well the items that reflect the same construct yield similar results. How consistent, the results are for different items for the same construct within the measure is being measured and it is concerned with how reliable the items in a test instrument are with each other. For finding the reliability, test instruments were pilot tested. A group of 50 students was formed from the sample. It contained equal number of boys and girls. The students were administered the test instruments.
The Cronbach’s alpha coefficient was calculated. Cronbach’s Alpha is mathematically equivalent to the average of all possible split-half estimates. As the environmental awareness instrument consists of six dimensions and 30 items, the alpha for each dimension was calculated separately and the Cronbach’s alpha for the whole awareness scale was also calculated. For the other instruments, total Cronbach’s alpha was calculated. SPSS 16 Students version was used for all the statistical calculations. As per the SAS Institute Inc manual, an alpha value of 0.6 is generally considered an indication of a reasonable scale (SAS Institute Inc, 1988).

Table 3.1 gives the reliability coefficient of the test instruments used in the study. The Reliability scores of various tools are as follows:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Number of Samples</th>
<th>Number of Items</th>
<th>Cronbach’s Alpha Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Awareness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Warming</td>
<td>50</td>
<td>5</td>
<td>0.791</td>
</tr>
<tr>
<td>Air Pollution</td>
<td>50</td>
<td>5</td>
<td>0.750</td>
</tr>
<tr>
<td>Soil Pollution</td>
<td>50</td>
<td>5</td>
<td>0.781</td>
</tr>
<tr>
<td>Water Pollution</td>
<td>50</td>
<td>5</td>
<td>0.916</td>
</tr>
<tr>
<td>Conservation of Energy</td>
<td>50</td>
<td>5</td>
<td>0.894</td>
</tr>
<tr>
<td>Conservation of Forests</td>
<td>50</td>
<td>5</td>
<td>0.927</td>
</tr>
<tr>
<td>Overall Environmental Awareness</td>
<td>50</td>
<td>30</td>
<td>0.916</td>
</tr>
<tr>
<td>Environmental Attitudes</td>
<td>50</td>
<td>28</td>
<td>0.936</td>
</tr>
<tr>
<td>Environmental Behaviour</td>
<td>50</td>
<td>15</td>
<td>0.818</td>
</tr>
</tbody>
</table>
From Table 3.1, it is clear that the Cronbach’s alpha values for all the test instruments and the factors within them are greater than 0.6. This confirms that the test instruments constructed are highly reliable.

Table 3.2

Confirmative Factor Analysis of Environmental Awareness

<table>
<thead>
<tr>
<th>Dimensions of Environmental Awareness</th>
<th>CMIN</th>
<th>P value</th>
<th>GFI</th>
<th>AGFI</th>
<th>CFI</th>
<th>RMR</th>
<th>RMSEA</th>
<th>Chronbach’s Alpha Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming</td>
<td>3.511</td>
<td>0.173</td>
<td>0.999</td>
<td>0.995</td>
<td>1.000</td>
<td>0.010</td>
<td>0.020</td>
<td>0.791</td>
</tr>
<tr>
<td>Air Pollution</td>
<td>1.472</td>
<td>0.225</td>
<td>1.000</td>
<td>0.995</td>
<td>1.000</td>
<td>0.007</td>
<td>0.016</td>
<td>0.750</td>
</tr>
<tr>
<td>Soil Pollution</td>
<td>5.145</td>
<td>0.076</td>
<td>0.998</td>
<td>0.982</td>
<td>0.998</td>
<td>0.011</td>
<td>0.051</td>
<td>0.781</td>
</tr>
<tr>
<td>Water Pollution</td>
<td>0.004</td>
<td>0.949</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.916</td>
</tr>
<tr>
<td>Conservation of Energy</td>
<td>1.761</td>
<td>0.184</td>
<td>1.000</td>
<td>0.994</td>
<td>1.000</td>
<td>0.004</td>
<td>0.020</td>
<td>0.894</td>
</tr>
<tr>
<td>Conservation of Forest</td>
<td>3.183</td>
<td>0.074</td>
<td>0.998</td>
<td>0.977</td>
<td>0.999</td>
<td>0.010</td>
<td>0.058</td>
<td>0.027</td>
</tr>
</tbody>
</table>

From Table 3.2, it is found that the calculated p value for the dimensions of environmental awareness viz., Global warming, Air pollution, Soil pollution, Water pollution, Conservation of energy and Conservation of forest (0.173, 0.225, 0.076, 0.949, 0.184, 0.074) are greater than 0.05 which indicates perfectly fit. Here GFI (Goodness of Fit Index) value and AGFI (Adjusted Goodness of Fit Index) value for Global warming, Air pollution, Soil pollution, Water pollution, Conservation of energy and Conservation of forest are greater than 0.9 which represent it is a good fit.
The calculated CFI (Comparative Fit Index) value is 1 which means that all the dimensions of environmental awareness are perfectly fit. And also it is found that RMSEA (Root Mean Square Error of Approximation) value for Global warming, Air pollution, Soil pollution, Water pollution, Conservation of energy and Conservation of forest (0.020, 0.016, 0.051, 0.000, 0.020, 0.058) are less than 0.10 which indicates that all the dimensions of environmental awareness are perfectly fit.

3.8 SAMPLING PROCEDURE

List of the schools in every district was collected from the Department of Secondary and Higher Secondary Education. There are three categories of the schools existing in Tamil Nadu viz. (i) Government schools (ii) Government aided schools and (iii) Self financing schools. From every district, few schools belonging to these categories were selected by stratified random method and from these schools, the students studying in secondary and higher secondary classes were selected as sample.

Random sampling procedure was followed in selecting the samples from each school. Great care was taken in selection of the sample such that the sample consisted of the students belonging to various categories such as Gender, Age, Class, Medium of instruction, Socio-Economic status etc. In total 1920 samples were taken for the study.
3.9 LOCATION OF THE SCHOOLS

Figure 3.1 shows the map of Tamil Nadu where the study was conducted in schools from 32 districts of Tamil Nadu.

Figure 3.1
Map of Tamil Nadu
Table 3.3

Sample Demography

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Sample</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>960</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>960</td>
<td>50.00</td>
</tr>
<tr>
<td>Age in years</td>
<td>13-15</td>
<td>960</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>16-18</td>
<td>960</td>
<td>50.00</td>
</tr>
<tr>
<td>Class</td>
<td>Secondary</td>
<td>1070</td>
<td>55.73</td>
</tr>
<tr>
<td></td>
<td>Higher secondary</td>
<td>850</td>
<td>44.27</td>
</tr>
<tr>
<td>Medium of Instruction</td>
<td>Tamil</td>
<td>1111</td>
<td>57.86</td>
</tr>
<tr>
<td></td>
<td>English</td>
<td>809</td>
<td>42.14</td>
</tr>
<tr>
<td>School Management Type</td>
<td>Government</td>
<td>642</td>
<td>33.34</td>
</tr>
<tr>
<td></td>
<td>Aided</td>
<td>638</td>
<td>33.33</td>
</tr>
<tr>
<td></td>
<td>Private</td>
<td>640</td>
<td>33.33</td>
</tr>
<tr>
<td>Locality</td>
<td>Urban</td>
<td>804</td>
<td>41.87</td>
</tr>
<tr>
<td></td>
<td>Semi-urban</td>
<td>166</td>
<td>08.65</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>950</td>
<td>49.48</td>
</tr>
<tr>
<td>Socio-Economic status</td>
<td>Low</td>
<td>519</td>
<td>27.03</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>909</td>
<td>47.34</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>492</td>
<td>25.63</td>
</tr>
<tr>
<td>Religion</td>
<td>Hindu</td>
<td>508</td>
<td>26.46</td>
</tr>
<tr>
<td></td>
<td>Christian</td>
<td>700</td>
<td>36.46</td>
</tr>
<tr>
<td></td>
<td>Muslim</td>
<td>417</td>
<td>21.72</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>295</td>
<td>15.36</td>
</tr>
<tr>
<td>Community</td>
<td>FC</td>
<td>279</td>
<td>14.53</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>671</td>
<td>34.95</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>600</td>
<td>31.25</td>
</tr>
<tr>
<td></td>
<td>SC/ST</td>
<td>370</td>
<td>19.27</td>
</tr>
</tbody>
</table>
3.10 DATA COLLECTION

After preparing the final form of three tools and getting the list of schools in every district of Tamilnadu, the researcher set out to collect the data from the sample. The heads of the institutions were contacted sufficiently earlier and permission was sought for collecting the data from secondary and higher secondary students. The researcher introduced herself and the study to the students. She explained the tools and the method of filling them to the students. The students were asked to read the tools carefully and they were requested to give their free, frank and genuine opinions by ticking any one of the categories in their options column. Personal data sheets were distributed among the students to collect the personal details and information on the selected variables. Personal data sheet along with tools were collected back after 60 minutes. Thus the data for the study were collected.

3.11 ORGANISATION OF DATA AND ITS ANALYSIS

Analysis of the data is as important as any other components of the research process and the analysis and interpretation of data involves the objective material in the possession of the researcher and his subjective reactions and desires to derive from the data, the inherent meaning in their relation to the problem. However valid, reliable and adequate the data may be, it does not serve any worthwhile purpose unless it is carefully edited, systematically classified and tabulated, scientifically analyzed, intelligently interpreted and rationally concluded.

The data collected from the sample were analysed by using SPSS 16.0 version. Initially, the data were fed in the excel worksheet and then transferred to
SPSS. The statistical analysis such as ‘t’ test, ANOVA, Regression, Path Analysis and chi-square were used in the present study.

The analysis has been categorized as Descriptive Analysis and Inferential Analysis. The Descriptive Analysis discusses the mean, sample size, frequencies, standard deviation etc. The inferential statistics is used for testing various hypotheses.

3.12 CONCLUSION

This chapter has outlined the design of the present study, the procedures followed and the nature of sample and tools used. The hypotheses to be tested have been formulated and the methods of analysis have also been planned.