1 TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>ii-iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv-vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii-viii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>ix-xi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapters No.</th>
<th>Page</th>
</tr>
</thead>
</table>
Chapter 1: Introduction

1.1 Current status of Medicinal Plants

1.2 *Nigella Sativa*, a medicinally important plant

1.2.1 Classification

1.2.2 Description

1.2.3 History of Cultivation

1.2.4 Nutritional value

1.2.5 History of Medicinal Uses

1.2.6 Clinical Activities of *N. sativa*

1.2.6.1 Antimicrobial and antidermatophyte activity

1.2.6.2 Anticestodal activities

1.2.6.3 Antioxidant activity

1.2.6.4 Hepatoprotective activity

1.2.6.5 Antidiabetic activity

1.2.6.6 Analgesic and anti-inflammatory activities
1.2.6.7 Antitumor activity

1.2.6.8 Anti-histamine activity

1.2.6.9 Anticonvulsant effects

1.2.6.10 Immunomodulatory effect

1.2.6.11 Hematological effects

1.2.6.12 Effect on gastric secretion

1.2.6.13 Antifertility activity

1.2.6.14 Abortifacient activity

1.2.6.15 Promotes lactation

1.2.6.16 Anthelmintic activity

1.2.6.17 Other activities

1.3 Seed Germination

1.4 Hypothesis

1.5 Aims and Objectives

1.6 Significance of Proposed Study

1.7 References
Chapter 2: Study of the morphological changes in different phases of seed germination in *Nigella sativa* seed

2.1 Rationale

2.2 Review of Literature

2.2.1 Seed germination

2.2.2 Factors affecting seed germination

2.2.2.1 Seed maturity and dormancy

2.2.2.2 Storage time and temperature

2.2.2.3 Imbibition and the Resumption of Metabolism

2.2.2.4 Protein Synthesis during Germination

2.2.2.5 Radicle Extension and the Completion of Germination

2.2.3 Germination Under stress

2.2.3.1 Germination under CdCl₂ stress

2.2.3.2 Germination under salt stress

2.3 Materials and Methods

30 2.3.1 Collection of *N. sativa* seeds

31 2.3.2 Germination of *N. sativa* seeds

32 2.3.3 Germination under stress

33 2.3.4 Morphological observations

34 2.3.5 Germination Percentage

35 2.3.6 Determination of length of Hypocotyl & Epicotyl
2.3.7 Determination of Fresh and Dry Weight

2.3.8 Statistical Analysis

2.4 Result and Discussion

2.4.1 Germination of seeds

2.4.1.1 Germination of N. sativa seeds in Distilled Water

2.4.1.2 Germination of N. sativa seeds in Cadmium Stress

2.4.1.3 Germination of N. sativa seeds in Salt Stress

2.4.2 Effect of stress on survival of seedlings

2.4.2.1 Germination percentage in Distilled Water

2.4.2.2 Germination percentage in Cadmium Stress

2.4.2.3 Germination percentage in NaCl Stress

2.4.3 Effect on the length of Hypocotyl and Epicotyl

2.4.3.1 Effect on the length of Hypocotyl and Epicotyl in distilled water

2.4.3.2 Effect on the length of Hypocotyl and Epicotyl in Cadmium stress

2.4.3.3 Effect on the length of Hypocotyl and Epicotyl in salt stress

2.4.4 Effect on Fresh and dry Weight

2.4.4.1 Effect on Fresh and dry Weight in Distilled Water

2.4.4.2 Effect on Fresh and dry Weight in
Chapter 3: Study of content of biomolecules in N. sativa seed at different phases of germination

3.1 Rationale

3.2 Review of Literature

3.2.1 Biochemical Analysis of N. sativa seed

3.2.2 Active Principals in Black Seed

3.2.3 Importance of N. sativa in nutrition

3.2.4 Biochemical changes during Germination

3.2.4.1 Changes in starch content of Seed during germination

3.2.4.2 Changes in sugar content of Seed during germination

3.2.4.3 Changes in fat content of Seed during germination

3.2.4.4 Changes in phytosterols content of Seed during germination

3.2.4.5 Changes in total proteins of Seed during germination

3.2.4.6 Effect of CdCl₂ stress on protein content during germination

3.2.4.7 Effect of NaCl stress on protein content during germination

3.3 Materials and Methods
3.3.1 Collection of seeds

3.3.2 Germination of seeds

3.3.3 Harvesting of Germinated seed

3.3.4 Biochemical analyses of N. sativa in different phases of seed Germination

3.3.4.1 Determination of Total Aldoses

3.3.4.2 Determination of Ketoses

3.3.4.3 Determination of Starch

3.3.4.4 Determination of Non Reducing Sugar

3.3.4.5 Determination of Total Fat

3.3.4.6 Determination of Phytosterols

3.3.5. Protein Profile by SDS-PAGE

3.3.6. Statistical Analyses

3.4 Result and Discussion

3.4.1 Seed Reserve Solubilization during Germination
3.4.2 Biochemical changes in Total Aldoses

3.4.3 Biochemical changes in Ketoses

3.4.4 Biochemical changes in Starch content

3.4.5 Biochemical changes in Non Reducing sugar

3.4.6 Biochemical changes in Total Fats

3.4.7 Biochemical changes in Phytosterols

3.4.8 Biochemical changes in Soluble Protein Content

3.4.9 Protein Profiling by SDS-PAGE

3.4.10 Effect of stress conditions on protein profiles

3.5 Conclusions

3.6 References

Chapter 4: Effect of different germination phases of N. sativa seed on enzymes of primary metabolism

4.1 Rationale 127

4.2 Review of Literature 128

4.2.1 Changes in the Activity of Enzymes during Germination 129

4.2.1.1 Amylases (EC 3.2.1.1) 129

4.2.1.2 Protease 130

4.2.1.3 Lipase (EC 3.1.1.3) 130

4.2.1.4 Acid Phosphatase (3.1.3.3.2) 131
4.2.1.5 Nitrate reductase (EC 1.6.6.1) 132

4.3 Materials and Methods 133

94 4.3.1 Plant material 133

95 4.3.2 Amylase Assay 133

96 4.3.3 Protease Assay 134

97 4.3.4 Lipase Assay 135

98 4.3.5 Acid Phosphatase Assay 135

99 4.3.6 Nitrate Reductase Assay 136

100 4.3.7 Statistical analysis 136

101 4.4 Result and Discussion 137

102 4.4.1 Amylase Activity during Germination 138
Chapter 5: Alterations in the antioxidant potential in different phases of germination of *N. sativa* seed 156-197

5.1 Rationale 156

5.2 Review of Literature 157

5.2.1 Antioxidant activity of *N. sativa* 157

5.2.2 Activity of Antioxidant enzymes during Germination 158

5.2.2.1 Super oxide dismutase (SOD) 160

5.2.1.2 Catalase (CAT) (EC 1.11.1.6) 161

5.2.1.3 Peroxidase (POD) (EC 1.11.1.7) 161

5.2.1.4 Ascorbate Peroxidase (APX) 161

5.2.3 ROS generation under stress conditions 162

5.2.4 Heavy metal toxicity in plants and production of ROS 163

5.2.5 Cadmium Toxicity in Plants 163

5.2.6 Effect of Salinity on Plants 164
5.3 Materials and Methods

112 5.3.1 Collection of N. sativa seeds 165

113 5.3.2 Germination of N. sativa seeds 166

114 5.3.3 Harvest of germinated seeds 166

115 5.3.4 Determination of Lipid Peroxidation 166

116 5.3.5 Enzyme Extraction 167

117 5.3.6 Assay of Antioxidant Enzyme Activities 167

118 5.3.6.1 Assay of SOD activity 167

119 5.3.6.2 Assay of CAT activity 168

120 5.3.6.3 Assay of POD activity 168

121 5.3.6.4 Assay of APX activity 168

122 5.3.7 Statistical Analysis 168

123 5.4 Result and Discussion 169

124 5.4.1 Alteration in the Activity of Antioxidant Enzymes in N. Sativa seed during different phases of germination 174

125

5.4.1.1. Lipid peroxidation 174
5.4.1.2. Superoxide dismutase 175
5.4.1.3. Catalase 176
5.4.1.4. Peroxidases

5.4.1.5. Ascorbate Peroxidase

126 5.4.2 Changes in Antioxidative Defence System in N. sativa seed grown under CdCl₂ stress during different phases of germination.

5.4.2.1. Lipid peroxidation

5.4.2.2. Superoxide dismutase

5.4.2.3. Catalase

5.4.2.4. Peroxidases

5.4.2.5. Ascorbate Peroxidase

127 5.4.3 Changes in Antioxidative Defense System in N. sativa Seed grown under NaCl stress during different phases of germination

5.4.1.1. Lipid peroxidation

5.4.1.2. Superoxide dismutase

5.4.1.3. Catalase and Peroxidase

5.4.1.4. Ascorbate Peroxidase

5.5 Conclusions

5.6 References

128 Chapter 6: phytochemical screening of nigella sativa seeds during Germination

6.1 Rationale

6.2 Review of Literature

199 6.2.1. Active Phytoconstituent of N. sativa

6.2.2. Alterations in Phytoconstituent of seed during germination

6.3. Materials and Methods

6.3.1. Collection of N. sativa seeds

6.3.2. Germination of N. sativa seeds

6.3.3. Preparation of samples

6.3.4. Phytochemical Investigation
6.3.4.1. Test for Sterols 203
6.3.4.2. Tests for Alkaloids 203
6.3.4.3. Tests for Tannins 204
6.3.4.4. Tests for Saponins 204
6.3.4.5. Tests for Phenolic compounds 205
6.3.4.6. Tests for Flavonoids 205
6.3.4.7. Test for Terpenoids 205
6.3.4.8. Test for cardiac glycosides 206

6.3.5. Study of Phytochemicals by Thin Layer Chromatography 206
6.3.5.1. Preparation of TLC plate 206
6.3.5.2. Activation of TLC plate 206
6.3.5.3. Equilibration of TLC plate 207
6.3.5.4. Loading of the sample 207
6.3.5.5. Running the Sample 207
6.3.5.6. Analysis of the data 207
6.3.5.7. TLC study of sterols 208
6.3.5.8. TLC study of alkaloids 208
6.3.5.9. TLC study of phenols 208
6.3.5.10. TLC study of flavoniods 209
6.3.5.11. TLC study of glycosides 209

6.3.6. Spectrophotometric Analysis 209
6.3.6.1. Preparation of fat free sample 209
6.3.6.2. Estimation of total phenols in different stages of germination 209
6.3.6.3. Estimation of total flavonoids in different stages of germination 210

6.4. Results and Discussion 210
6.4.1. Phytochemical analysis of different germination phases of N. sativa 211
6.4.2. Thin layer chromatography of different phases of germination of N. sativa seeds 214
6.4.2.1. Alkoloids 214
6.4.2.2. Sterols 216
6.4.2.3. Polyphenols 217
6.4.2.4. Flavonoids 218
6.4.2.5. Cardiac Glycosides 219
6.4.3. Quantitative Estimation of Phytochemicals 220
6.4.4 Analysis of Flavonoid by Absorption Spectrum 221
6.5. Conclusions 225
6.6 References 225-

130 Chapter 7: Antibacterial potential of Nigella sativa seeds during progression of germination 232-278

7.1 Rationale 232
7.2 Review of Literature 232
7.3 Materials and Method 235
7.3.1 Collection of Nigella sativa seeds 235

131

7.3.2 Germination of N. sativa seeds 235

132 7.3.3 Extraction method 235

133 7.3.4 Determination of in vitro anti-microbial effect 236

134 7.3.4.1 Tested Microbial strain 236

135 7.3.4.2 Inoculum’s preparation 236

136 7.3.4.3 Broth dilution assay 236

137 7.3.4.4 Agar well diffusion assay 237

138 7.4 Results 238
7.4.1 Activity of standard antibiotics against selected bacterial strains

7.4.2 Antimicrobial activity of aqueous extract of *N. sativa*

7.4.3 Antimicrobial activity of Methanol extract of *N. sativa* 244

7.4.4 Antimicrobial activity of Ethanol extract of *N. sativa* 249

7.4.5 Antimicrobial activity of isopropanol extract of *N. sativa*

7.4.6 Antimicrobial activity of chloroform extract of *N. sativa*

7.4.7 Antimicrobial activity of hexane extract of *N. sativa*

7.4.8 Antimicrobial activity of diethyl extract of *N. sativa*

7.5 Discussion

7.6 Conclusions

7.7 References