List of Figures

Fig. 2.1 Geometry of an n-layer dielectric with side walls and a point charge at \((x_0, y_0)\)

Fig. 2.2a Microstrip line with rectangular side walls

Fig. 2.2b Geometry to calculate the Green’s function

Fig. 2.3 Classification based on boundary conditions

Fig. 2.4 N-conductors with respective surface charges

Fig. 2.5 Lateral view of general microstrip-like interconnect structure

Fig. 2.6 Lateral view of edge-coupled microstrip-like interconnect structure

Fig. 3.1 Lateral view of the interconnect structure guarded by ground tracks.

Fig. 3.2 Simulated, predicted, and measured characteristic impedance
\((w = 1 \text{ mm} \text{ and } b_2 = 1.59 \text{ mm})\).

Fig. 3.3a Field distribution in interconnect structure (without ground tracks).

Fig. 3.3b Field distribution in interconnect structure (with ground track).

Fig. 3.4a Simulated and analytical characteristic impedance
\((w = 0.78 \text{ mm}, \varepsilon_2 = 2.2, d = 0.1 \text{ mm})\)

Fig. 3.4b Simulated and analytical characteristic impedance
\((w = 0.78 \text{ mm}, \varepsilon_2 = 4.6, d = 0.1 \text{ mm})\)

Fig. 3.4c Simulated and analytical characteristic impedance
\((w = 0.78 \text{ mm}, \varepsilon_2 = 9.9, d = 0.1 \text{ mm})\)

Fig. 3.5 Variation in line capacitance due to adjacent ground lines
a. Line width \(w = 1 \text{ mm}, \text{ line length } l = 10 \text{ mm}, \text{ line thickness } t = 0.001 \text{ mm}, \varepsilon_2 = 2.2, \text{ and frequency } f = 5 \text{ GHz}\)
b. Line width \(w = 1 \text{ mm}, \text{ line length } l = 10 \text{ mm}, \text{ line thickness } t = 0.001 \text{ mm}, \varepsilon_2 = 4.6, \text{ and frequency } f = 5 \text{ GHz}\)
c. Line width \(w = 1 \text{ mm}, \text{ line length } l = 10 \text{ mm}, \text{ line thickness } t = 0.001 \text{ mm}, \varepsilon_2 = 11.9, \text{ and frequency } f = 5 \text{ GHz}\)

Fig. 3.6 Variation in damping factor \(\zeta\) due to adjacent ground lines
a. Line width \(w = 1 \text{ mm}, \text{ line length } l = 10 \text{ mm}, \text{ line thickness } t = 0.001 \text{ mm}, \varepsilon_2 = 2.2, \text{ and frequency } f = 5 \text{ GHz}\)
b. Line width \(w = 1 \text{ mm}, \text{ line length } l = 10 \text{ mm}, \text{ line thickness } t = 0.001 \text{ mm}, \varepsilon_2 = 4.6, \text{ and frequency } f = 5 \text{ GHz}\)
c. Line width $w = 1\, \text{mm}$, line length $l = 10\, \text{mm}$, line thickness $t = 0.001\, \text{mm}$, $\varepsilon_2 = 11.9$, and frequency $f = 5\, \text{GHz}$

Fig. 3.7 Unit step response of the interconnect line with and without ground lines

a. Without ground lines ($w = 1\, \text{mm}$, $b_2 = 1.59\, \text{mm}$, and $\varepsilon_2 = 2.2$)

b. With ground lines ($w = 1\, \text{mm}$, $b_2 = 1.59\, \text{mm}$, $d = 0.05\, \text{mm}$, and $\varepsilon_2 = 2.2$)

c. Without ground lines ($w = 1\, \text{mm}$, $b_2 = 1.59\, \text{mm}$, and $\varepsilon_2 = 4.6$)

d. With ground lines ($w = 1\, \text{mm}$, $b_2 = 1.59\, \text{mm}$, $d = 0.05\, \text{mm}$, and $\varepsilon_2 = 4.6$)

e. Without ground lines ($w = 1\, \text{mm}$, $b_2 = 1.59\, \text{mm}$, and $\varepsilon_2 = 11.9$)

f. With ground lines ($w = 1\, \text{mm}$, $b_2 = 1.59\, \text{mm}$, $d = 0.05\, \text{mm}$, and $\varepsilon_2 = 11.9$)

Fig. 4.1 Lateral view of a stripline guarded by ground tracks

Fig. 4.2 Simulated, analytical, and measured characteristic impedance.

a. ($w = 1\, \text{mm}$, $b_2 = 0.254\, \text{mm}$)

b. ($w = 1\, \text{mm}$, $b_2 = 0.508\, \text{mm}$)

c. ($w = 1\, \text{mm}$, $b_2 = 0.79\, \text{mm}$)

d. ($w = 1\, \text{mm}$, $b_2 = 1.59\, \text{mm}$)

Fig. 4.3 Simulated and analytical characteristic impedance

($w = 1\, \text{mm}$, $b_2 = 1.59\, \text{mm}$, $d = 0.2\, \text{mm}$)

Fig. 4.4 Variation in line capacitance due to adjacent ground lines

a. Line width $w = 1\, \text{mm}$, line length $l = 10\, \text{mm}$, line thickness $t = 0.001\, \text{mm}$, $\varepsilon_2 = 2.2$, and frequency $f = 5\, \text{GHz}$

b. Line width $w = 1\, \text{mm}$, line length $l = 10\, \text{mm}$, line thickness $t = 0.001\, \text{mm}$, $\varepsilon_2 = 4.6$, and frequency $f = 5\, \text{GHz}$

c. Line width $w = 1\, \text{mm}$, line length $l = 10\, \text{mm}$, line thickness $t = 0.001\, \text{mm}$, $\varepsilon_2 = 9.9$, and frequency $f = 5\, \text{GHz}$

d. Line width $w = 1\, \text{mm}$, line length $l = 10\, \text{mm}$, line thickness $t = 0.001\, \text{mm}$, $\varepsilon_2 = 11.9$, and frequency $f = 5\, \text{GHz}$

Fig. 4.5 Variation in damping factor ζ due to adjacent ground lines

Fig. 4.5a Line width $w = 0.1\, \text{mm}$, line length $l = 10\, \text{mm}$, line thickness $t = 0.001\, \text{mm}$, $b_2 = 0.254\, \text{mm}$, and frequency $f = 5\, \text{GHz}$

Fig. 4.5b Line width $w = 0.1\, \text{mm}$, line length $l = 10\, \text{mm}$, line thickness $t = 0.001\, \text{mm}$, $b_2 = 1.59\, \text{mm}$, and frequency $f = 5\, \text{GHz}$

Fig. 5.1 Lateral view of the interconnect structure with a GPA

Fig. 5.2 Vertical profiles in region 2

Fig. 5.3 Characteristic impedance of the line as a function of aperture width
$l = 1 \text{ mm, } w = 0.76 \text{ mm, and } b_2 = 0.508 \text{ mm}$

Fig. 5.4 Amplitude of z-directed (tangential) component of H-field on the cross-section plane
($w = 1.5 \text{ mm, } l = 1 \text{ mm, } W_s = 4 \text{ mm, } \varepsilon_2 = 2.2, \ v_2 = 0.508 \text{ mm, } f = 1 \text{ GHz}$)

Fig. 5.5 Characteristic impedance versus frequency
($\varepsilon_2 = 2.2, \ l = 4 \text{ mm, } w = 0.76 \text{ mm, } W_s = 1 \text{ mm}$)

Fig. 5.6 Characteristic impedance versus frequency
($\varepsilon_2 = 4.6, \ l = 4 \text{ mm, } w = 0.76 \text{ mm, } W_s = 1 \text{ mm}$)

Fig. 5.7 Characteristic impedance versus frequency
($\varepsilon_2 = 9.9, \ l = 4 \text{ mm, } w = 0.76 \text{ mm, } W_s = 1 \text{ mm}$)

Fig. 5.8 Characteristic impedance versus frequency for different aperture widths
($\varepsilon_2 = 9.9, \ l = 1 \text{ mm, } w = 0.76 \text{ mm, } b_2 = 0.508 \text{ mm}$)

Fig. 5.9 Line capacitance as a function of GPA width
a. Line width $w = 1 \text{ mm, line length } l = 10 \text{ mm, line thickness } t = 0.001 \text{ mm, } \varepsilon_2 = 2.2$, and frequency $f = 5 \text{ GHz}$

b. Line width $w = 1 \text{ mm, line length } l = 10 \text{ mm, line thickness } t = 0.001 \text{ mm, } \varepsilon_2 = 4.6$, and frequency $f = 5 \text{ GHz}$

c. Line width $w = 1 \text{ mm, line length } l = 10 \text{ mm, line thickness } t = 0.001 \text{ mm, } \varepsilon_2 = 11.9$, and frequency $f = 5 \text{ GHz}$

Fig. 5.10 Variation in damping factor (ζ) due to GPA
a. Line width $w = 1 \text{ mm, line length } l = 10 \text{ mm, line thickness } t = 0.001 \text{ mm, } \varepsilon_2 = 2.2$, and frequency $f = 5 \text{ GHz}$

b. Line width $w = 1 \text{ mm, line length } l = 10 \text{ mm, line thickness } t = 0.001 \text{ mm, } \varepsilon_2 = 4.6$, and frequency $f = 5 \text{ GHz}$

c. Line width $w = 1 \text{ mm, line length } l = 10 \text{ mm, line thickness } t = 0.001 \text{ mm, } \varepsilon_2 = 9.9$, and frequency $f = 5 \text{ GHz}$

d. Line width $w = 1 \text{ mm, line length } l = 10 \text{ mm, line thickness } t = 0.001 \text{ mm, } \varepsilon_2 = 11.9$, and frequency $f = 5 \text{ GHz}$

Fig. 6.1 Typical multiconductor microstrip interconnect layout

Fig. 6.2 Edge-coupled transmission line structure with intermediate ground track

Fig. 6.3 Even- and odd-mode electric field lines

Fig. 6.4 Coupled interconnect lines ($d >> d_l$)

Fig. 6.4 Coupled interconnect lines ($d = d_l$)

Fig. 6.4a Measured and analytical results for coupled lines without ground traces (Microstrip coupler)
(w = 1.5 mm, b₂ = 1.59 mm, s = 0.5 mm, ε₂ = 4.6, length = 35 mm)

Fig. 6.4b Measured and analytical results for coupled lines with ground traces

(w = 1.5 mm, b₂ = 1.59 mm, s = 1.5 mm, d₁ = 0.25 mm, ε₂ = 4.6, d = 50 mm, length = 35 mm)

Fig. A1.1a Microstrip line with GPA

(Line width w = 1 mm, height of dielectric b₂ = 0.254 mm, line thickness t = 0.003 mm, line length l = 20 mm, and frequency f = 6 GHz)

Fig. A1.1b Microstrip line guarded by ground tracks

(Line width w = 1 mm, height of dielectric b₂ = 1.59 mm, line thickness t = 0.003 mm, line length l = 20 mm, and frequency f = 6 GHz)
List of Tables

TABLE 1.1 Modeling criteria for interconnect lines
TABLE 2.1 Various identities depending on the boundary conditions
TABLE 3.1 Characteristic impedance Z for a microstrip line ($\varepsilon_2 = 3.78$, $d = 5 \text{ mm}$).
TABLE 3.2 Percentage errors between the analytical and simulated characteristic impedance. ($w = 0.76 \text{ mm}$, $d = 0.1 \text{ mm}$, and $f = 7 \text{ GHz}$)
TABLE 3.3 Variation in line inductance L due to placement of ground lines (Line width $w = 1 \text{ mm}$, line length $l = 10 \text{ mm}$, line thickness $t = 0.001 \text{ mm}$, and frequency $f = 5 \text{ GHz}$)
TABLE 3.4 Equivalent delay parameters
 a. $b_2 = 0.254 \text{ mm}$
 b. $b_2 = 0.508 \text{ mm}$
 c. $b_2 = 0.79 \text{ mm}$
 d. $b_2 = 1.59 \text{ mm}$

TABLE 4.1 Characteristic impedance Z for a suspended stripline ($w = 1 \text{ mm}$, $\varepsilon_2 = 3.78$, $d = 50 \text{ mm}$).
TABLE 4.2 Variation in line inductance L due to placement of ground lines
 (Line width $w = 1 \text{ mm}$, line length $l = 10 \text{ mm}$, line thickness $t = 0.001 \text{ mm}$, and frequency $f = 5 \text{ GHz}$)
TABLE 4.3 Equivalent delay parameters
 a. $b_2 = 0.254 \text{ mm}$
 b. $b_2 = 0.508 \text{ mm}$
 c. $b_2 = 0.79 \text{ mm}$
 d. $b_2 = 1.59 \text{ mm}$

TABLE 5.1 Characteristic impedance Z obtained by measurement, simulation and proposed formulation
 ($\varepsilon_2 = 4.6$, $l = 14 \text{ mm}$, $w = 4 \text{ mm}$, and $b_2 = 1.59 \text{ mm}$)
TABLE 5.2 Comparison of characteristic impedance Z for a microstrip line
 ($b_2 \gg 1$, $\varepsilon_2 = 3.78$)
TABLE 5.3 Variation in line inductance L due to GPA
 (Line width $w = 1 \text{ mm}$, line length $l = 10 \text{ mm}$, line thickness $t = 0.001 \text{ mm}$, and frequency $f = 5 \text{ GHz}$)
TABLE 5.4 Equivalent delay parameters
 a. $b_2 = 0.254 \text{ mm}$
b. \(b_2 = 0.508 \text{ mm} \)

c. \(b_2 = 0.79 \text{ mm} \)

d. \(b_2 = 1.59 \text{ mm} \)

TABLE 6.1a Comparison between analytical and simulated results

\((w = 0.1 \text{ mm}, b_2 = 0.254 \text{ mm}, b_3 \gg b_2, d = 50 \text{ mm}, \text{ and } f = 5 \text{ GHz}) \)

TABLE 6.1b Comparison between analytical and simulated results

\((w = 0.2 \text{ mm}, b_2 = 0.508 \text{ mm}, b_3 \gg b_2, d = 50 \text{ mm}, \text{ and } f = 5 \text{ GHz}) \)

TABLE 6.1c Comparison between analytical and simulated results

\((w = 0.5 \text{ mm}, b_2 = 0.79 \text{ mm}, b_3 \gg b_2, d = 50 \text{ mm}, \text{ and } f = 5 \text{ GHz}) \)

TABLE 6.1d Comparison between analytical and simulated results

\((w = 1.5 \text{ mm}, b_2 = 1.59 \text{ mm}, b_3 \gg b_2, d = 50 \text{ mm}, \text{ and } f = 5 \text{ GHz}) \)

TABLE 6.2a Comparison between analytical and simulated results

\((w = 0.1 \text{ mm}, b_2 = 0.254 \text{ mm}, b_3 \gg b_2, d = d_1 \text{ mm}, \text{ and } f = 5 \text{ GHz}) \)

TABLE 6.2b Comparison between analytical and simulated results

\((w = 0.2 \text{ mm}, b_2 = 0.508 \text{ mm}, b_3 \gg b_2, d = d_1 \text{ mm}, \text{ and } f = 5 \text{ GHz}) \)

TABLE 6.2c Comparison between analytical and simulated results

\((w = 0.5 \text{ mm}, b_2 = 0.79 \text{ mm}, b_3 \gg b_2, d = d_1 \text{ mm}, \text{ and } f = 5 \text{ GHz}) \)

TABLE 6.2d Comparison between analytical and simulated results

\((w = 1.5 \text{ mm}, b_2 = 1.59 \text{ mm}, b_3 \gg b_2, d = d_1 \text{ mm}, \text{ and } f = 5 \text{ GHz}) \)

TABLE 6.3 Comparison of theoretical results with standard design data

TABLE 6.4a Comparison between analytical and simulated results

\((b_2 = 0.79 \text{ mm}, f = 7 \text{ GHz}, b_3 \gg b_2, d = 50 \text{ mm}) \)

TABLE 6.4b Comparison between analytical and simulated results

\((b_2 = 0.79 \text{ mm}, f = 7 \text{ GHz}, b_3 \gg b_2, d = d_1) \)