CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGMENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER-1

INTRODUCTION

1.1. Exhaust Gas Emissions and its Effects
1.1.1 Oxides of Nitrogen
1.1.2 Carbon Monoxide
1.1.3 Soot
1.1.4 Hydrocarbon Emissions

1.2. Emission Norms

1.3. Auto Fuel Quality

1.4. Techniques to Reduce the Exhaust Emissions in Diesel Engines
1.4.1 Use of catalytic converters
1.4.2 Engine Design Modifications

1.5. Introduction to Computational Fluid Dynamics

1.6. Objectives and Scope for Present Investigation

CHAPTER-2

REVIEW OF LITERATURE

2.1 Introduction

2.2 Modeling of Fluid Flows in I.C. Engines

2.3 Fuel Sprays and Injection Strategies

2.4 EGR and Emission Reduction

2.5 Summary

CHAPTER-3
METHODOLOGY

3.1 Introduction 57
3.2 Basic Governing Equations 57
3.3 Lagrangian Model (Dispersed Multi-Phase Flow) 60
 3.3.1 Basic Conservation Equations 61
 3.3.2 Droplet Break-up Models 64
 3.3.3 Inter-Droplet Collisions 66
 3.3.4 Boiling Model 69
3.4 Inlet Flow Model 70
 3.4.1 Introduction 70
 3.4.2 Atomization models 71
 3.4.3 Wall Impingement 73
3.5 Coupled Procedure 76
 3.5.1 Introduction to Solution Algorithms and Flow 76
 3.5.2 The PISO algorithm 77
3.6 Discretisation Practice 80
3.7 Error Estimation 82
3.8 Chemical Reaction and Engine Combustion Methodology 83
 3.8.1 Introduction 83
 3.8.2 ECFM Combustion Model 85
 3.8.3 ECFM-3Z 90
 3.8.4 NOx Formation 93
 3.8.5 Soot Modeling 98

CHAPTER-4

INTRODUCTION AND OVERVIEW OF THE PROBLEM
SETUP IN CFD

4.1 Introduction to Meshing and Mesh Motion 100
 4.1.1 General Mesh Motion 100
 4.1.2 Cell Layer Removal and Addition 101
 4.1.3 Conditional Cell Attachment/Detachment 103
CHAPTER-5

RESULT AND DISCUSSION

5.1 Introduction 115

5.2 Validation of CFD Code 115

5.2.1 Presentation of Results 117

5.2.2 Comparison between Experimental and Predicted Pressure Histories 117

5.2.3 Comparison between Experimental and Predicted CO Emissions 118

5.2.4 Comparison between Experimental and Predicted NO Emissions 119

5.2.5 Concluding Remarks 120

5.3 Case Studies Taken for Further Studies 120

CHAPTER-6

EFFECT OF PISTON BOWL CONFIGURATION

6.1 Introduction 121

6.2 Details of Engine, Piston Bowl, Fuel Injection and Initial Conditions 122

6.3 Introduction to In-cylinder Fluid Flows 124

6.4 Analysis of In-cylinder Fluid Flows with the Swirl Velocities of X, Y and Z Centroid Coordinates

6.4.1 Effect of Bowl Configuration on X-Swirl Velocities 126
6.4.2 Effect of Bowl Configuration on Y-Swirl Velocities 130
6.4.3 Effect of Bowl Configuration on Z-Swirl Velocities 132
6.4.4 Summary on Swirl Velocities 134

6.5 Analysis of Local Turbulences through Velocity Vector Components

6.5.1 Introduction 134
6.5.2 Comparison of Velocity Vector Components at 38°bTDC 136
6.5.3 Comparison of Velocity Vector Components at 20°bTDC 136
6.5.4 Comparison of Velocity Vector Components at 10°bTDC 137
6.5.5 Comparison of Velocity Vector Components at 4°bTDC 138
6.5.6 Comparison of Velocity Vector Components at TDC 140
6.5.7 Comparison of Velocity Vector Components at 2°aTDC 141
6.5.8 Comparison of Velocity Vector Components at 8°aTDC 142
6.5.9 Comparison of Velocity Vector Components at 12°aTDC 144
6.5.10 Summary of Velocity Vectors 145

6.6 Fuel Sprays Analysis 150

6.6.1 Fuel Spray Distribution 150
6.6.2 Effect of Piston Bowl Configuration on Number of Droplet Parcels 154
6.6.3 Summary on Fuel Spray Analysis 157

6.7 Effect of Piston Bowl Configuration on In-cylinder Pressures 157

6.8 Effect of Piston Bowl Configuration on Heat Release Rates 159

6.9 In-cylinder Temperature Analysis 161

6.9.1 Effect of Piston Bowl Configuration on Mass-averaged Temperatures 162
6.9.2 In-cylinder Temperature Distributions 163
6.9.3 Summary on In-cylinder Temperature Analysis 167

6.10 Effect of Piston Bowl Configuration on Exhaust Emissions
CONCLUSIONS 210
REFERENCES 214
APPENDIX: List of publications related to this work 228