LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1-15</td>
</tr>
<tr>
<td>1.1</td>
<td>Physical properties of ferrochrome slag</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Mechanical properties of ferrochrome slag</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Chemical properties of ferrochrome slag</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Chemical properties of ferrochrome ash</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>EXPERIMENTAL PROGRAM</td>
<td>25-62</td>
</tr>
<tr>
<td>3.1</td>
<td>Physical properties of portland slag cement (PSC)</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical properties of portland slag cement (PSC)</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Physical properties of portland pozzolana cement (PPC)</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Chemical properties of portland pozzolana cement (PPC)</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Physical properties of ordinary portland cement (OPC) 43grade</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Chemical properties of ordinary portland cement (OPC) 43grade</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Physical properties of fine aggregate</td>
<td>29</td>
</tr>
<tr>
<td>3.8</td>
<td>Sieve analysis of fine aggregate</td>
<td>29</td>
</tr>
<tr>
<td>3.9</td>
<td>Physical properties of coarse aggregates</td>
<td>30</td>
</tr>
<tr>
<td>3.10</td>
<td>Sieve analysis of coarse aggregates</td>
<td>30</td>
</tr>
<tr>
<td>3.11</td>
<td>Properties of water</td>
<td>30</td>
</tr>
<tr>
<td>3.12</td>
<td>Properties of super plasticiser</td>
<td>31</td>
</tr>
<tr>
<td>3.13</td>
<td>Mix proportions</td>
<td>33</td>
</tr>
<tr>
<td>3.14</td>
<td>Description of concrete mixes</td>
<td>34</td>
</tr>
<tr>
<td>3.15</td>
<td>Details of mix ingredients (M-1 TO M-7)</td>
<td>35</td>
</tr>
<tr>
<td>3.16</td>
<td>Details of mix ingredients (M-8 TO M-12)</td>
<td>36</td>
</tr>
<tr>
<td>3.17</td>
<td>Details of mix ingredients (M-13 TO M-18)</td>
<td>37</td>
</tr>
<tr>
<td>3.18</td>
<td>Details of mix ingredients (M-19 TO M-25)</td>
<td>38</td>
</tr>
<tr>
<td>3.19</td>
<td>Details of mix ingredients (M-26 TO M-32)</td>
<td>39</td>
</tr>
</tbody>
</table>
CHAPTER 4 RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Compressive strength (MPa) by rebound hammer of concrete containing ferrochrome ash, lime and natural coarse aggregate</td>
<td>184</td>
</tr>
<tr>
<td>4.2</td>
<td>Compressive strength (MPa) by rebound hammer of concrete containing ferrochrome ash, lime & ferrochrome slag coarse aggregate</td>
<td>185</td>
</tr>
<tr>
<td>4.3</td>
<td>Compressive strength (MPa) for mix M-16 & M-21</td>
<td>187</td>
</tr>
<tr>
<td>4.4</td>
<td>Results of first crack and ultimate load</td>
<td>188</td>
</tr>
<tr>
<td>4.5</td>
<td>Compressive strength (MPa) for mix M-33 & M-34</td>
<td>192</td>
</tr>
<tr>
<td>4.6</td>
<td>Results of first crack and ultimate load</td>
<td>193</td>
</tr>
<tr>
<td>4.7</td>
<td>Regression analysis between strength properties</td>
<td>197</td>
</tr>
<tr>
<td>4.8</td>
<td>Regression analysis between strength and non-destructive properties (USPV)</td>
<td>203</td>
</tr>
<tr>
<td>4.9</td>
<td>Regression analysis between durability properties</td>
<td>206</td>
</tr>
<tr>
<td>4.10</td>
<td>Regression analysis between durability properties and USPV</td>
<td>211</td>
</tr>
<tr>
<td>4.11</td>
<td>Regression analysis between strength and durability properties</td>
<td>215</td>
</tr>
<tr>
<td>4.12</td>
<td>Regression analysis between strength properties</td>
<td>216</td>
</tr>
<tr>
<td>4.13</td>
<td>Regression analysis between strength and non-destructive properties (Ultra Sonic Pulse Velocity)</td>
<td>232</td>
</tr>
<tr>
<td>4.14</td>
<td>Regression analysis between durability properties of concrete containing lime, ferrochrome ash & ferrochrome slag</td>
<td>236</td>
</tr>
<tr>
<td>4.15</td>
<td>Regression analysis between durability properties and USPV of concrete containing lime, ferrochrome ash & ferrochrome slag</td>
<td>241</td>
</tr>
<tr>
<td>4.16</td>
<td>Regression analysis between strength and durability properties of concrete containing lime, ferrochrome ash & ferrochrome slag</td>
<td>245</td>
</tr>
<tr>
<td>4.17</td>
<td>Standard deviation of compressive strength at 7 days</td>
<td>256</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.18</td>
<td>Standard deviation of compressive strength at 28 days.</td>
<td>256</td>
</tr>
<tr>
<td>4.19</td>
<td>Standard deviation of compressive strength at 91 days</td>
<td>257</td>
</tr>
<tr>
<td>4.20</td>
<td>Standard deviation of compressive strength at 180 days</td>
<td>257</td>
</tr>
<tr>
<td>4.21</td>
<td>Standard deviation of compressive strength at 7 days</td>
<td>258</td>
</tr>
<tr>
<td>4.22</td>
<td>Standard deviation of compressive strength at 28 Days</td>
<td>258</td>
</tr>
<tr>
<td>4.23</td>
<td>Standard deviation of compressive strength at 91 days</td>
<td>259</td>
</tr>
<tr>
<td>4.24</td>
<td>Standard deviation of compressive strength at 180 days</td>
<td>259</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>XRD analysis of lime</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>XRD analysis of ferrochrome ash</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Hydrated lime</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Ferrochrome ash</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Ferrochrome slag aggregate</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>Consistency test by vicat apparatus</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>Setting time test by vicat apparatus</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>Soundness test by Le Chatelier apparatus</td>
<td>43</td>
</tr>
<tr>
<td>3.9</td>
<td>Slump test</td>
<td>44</td>
</tr>
<tr>
<td>3.10</td>
<td>Compressive strength test</td>
<td>45</td>
</tr>
<tr>
<td>3.11</td>
<td>Flexural strength test</td>
<td>46</td>
</tr>
<tr>
<td>3.12</td>
<td>Splitting tensile strength test</td>
<td>47</td>
</tr>
<tr>
<td>3.13</td>
<td>Modulus of elasticity test</td>
<td>49</td>
</tr>
<tr>
<td>3.14</td>
<td>Bond strength test (pull-out test)</td>
<td>50</td>
</tr>
<tr>
<td>3.15</td>
<td>Water Permeability test</td>
<td>51</td>
</tr>
<tr>
<td>3.16</td>
<td>Abrasion resistance test</td>
<td>54</td>
</tr>
<tr>
<td>3.17</td>
<td>Specimen immersed in sulphuric acid solution</td>
<td>55</td>
</tr>
<tr>
<td>3.18</td>
<td>Specimen immersed in sulphuric acid solution</td>
<td>57</td>
</tr>
<tr>
<td>3.19</td>
<td>General arrangement for sorptivity test</td>
<td>58</td>
</tr>
<tr>
<td>3.20</td>
<td>Ultra sonic pulse velocity test</td>
<td>60</td>
</tr>
<tr>
<td>3.21</td>
<td>Rebound hammer test</td>
<td>61</td>
</tr>
<tr>
<td>3.22</td>
<td>Flexural strength test of concrete beam</td>
<td>62</td>
</tr>
<tr>
<td>3.1</td>
<td>XRD analysis of lime</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>XRD analysis of ferrochrome ash</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Hydrated lime</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Ferrochrome ash</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Ferrochrome slag aggregate</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>Consistency test by vicat apparatus</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>Setting time test by vicat apparatus</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>Soundness test by Le Chatelier apparatus</td>
<td>43</td>
</tr>
<tr>
<td>3.9</td>
<td>Slump test</td>
<td>44</td>
</tr>
<tr>
<td>3.10</td>
<td>Compressive strength test</td>
<td>45</td>
</tr>
<tr>
<td>3.11</td>
<td>Flexural strength test</td>
<td>46</td>
</tr>
<tr>
<td>3.12</td>
<td>Splitting tensile strength test</td>
<td>47</td>
</tr>
<tr>
<td>3.13</td>
<td>Modulus of elasticity test</td>
<td>49</td>
</tr>
<tr>
<td>3.14</td>
<td>Bond strength test (pull-out test)</td>
<td>50</td>
</tr>
<tr>
<td>3.15</td>
<td>Water Permeability test</td>
<td>51</td>
</tr>
<tr>
<td>3.16</td>
<td>Abrasion resistance test</td>
<td>54</td>
</tr>
<tr>
<td>3.17</td>
<td>Specimen immersed in sulphuric acid solution</td>
<td>55</td>
</tr>
<tr>
<td>3.18</td>
<td>Specimen immersed in sulphuric acid solution</td>
<td>57</td>
</tr>
<tr>
<td>3.19</td>
<td>General arrangement for sorptivity test</td>
<td>58</td>
</tr>
<tr>
<td>3.20</td>
<td>Ultra sonic pulse velocity test</td>
<td>60</td>
</tr>
<tr>
<td>3.21</td>
<td>Rebound hammer test</td>
<td>61</td>
</tr>
<tr>
<td>3.22</td>
<td>Flexural strength test of concrete beam</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>RESULTS AND DISSUCTION</th>
<th>63-260</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Normal consistencies of PSC & PPC</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Setting time of PSC & PPC</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of lime on soundness of PSC & PPC</td>
<td>65</td>
</tr>
<tr>
<td>4.4</td>
<td>Workability of concrete made with PSC & PPC</td>
<td>66</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of lime on consistency of OPC blended with ferrochrome ash</td>
<td>67</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.6</td>
<td>Setting time of OPC blended with lime & ferrochrome ash</td>
<td>68</td>
</tr>
<tr>
<td>4.7</td>
<td>Soundness of OPC blended with lime & ferrochrome ash</td>
<td>69</td>
</tr>
<tr>
<td>4.8</td>
<td>Workability of OPC blended with lime & ferrochrome ash</td>
<td>69</td>
</tr>
<tr>
<td>4.9</td>
<td>Workability of PSC, PPC & OPC using ferrochrome slag</td>
<td>70</td>
</tr>
<tr>
<td>4.10</td>
<td>Workability of concrete with OPC blended with ferrochrome ash using ferrochrome slag as coarse aggregates</td>
<td>71</td>
</tr>
<tr>
<td>4.11</td>
<td>Density of concrete using natural coarse aggregate with ferrochrome ash and lime in OPC</td>
<td>72</td>
</tr>
<tr>
<td>4.12</td>
<td>Density of concrete using ferrochrome slag coarse aggregate with ferrochrome ash and lime in OPC</td>
<td>73</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of lime and ferrochrome ash on density of concrete containing natural and slag coarse aggregate – A comparison</td>
<td>74</td>
</tr>
<tr>
<td>4.14</td>
<td>Compressive strength of concrete made of PSC verses lime content</td>
<td>75</td>
</tr>
<tr>
<td>4.15</td>
<td>Compressive strength of concrete made of PSC verses age</td>
<td>76</td>
</tr>
<tr>
<td>4.16</td>
<td>Compressive strength of concrete made of PPC verses lime content</td>
<td>77</td>
</tr>
<tr>
<td>4.17</td>
<td>Compressive strength of concrete made of PPC verses age</td>
<td>78</td>
</tr>
<tr>
<td>4.18</td>
<td>Compressive strength of concrete made of PSC & PPC verses lime at 35 days</td>
<td>79</td>
</tr>
<tr>
<td>4.19</td>
<td>Compressive strength of concrete made of PSC & PPC verses lime at 42 days</td>
<td>79</td>
</tr>
<tr>
<td>4.20</td>
<td>Compressive strength of concrete made of OPC verses lime and ferrochrome ash content</td>
<td>81</td>
</tr>
<tr>
<td>4.21</td>
<td>Compressive strength of concrete made of OPC blended with lime and ferrochrome ash (FA) verses age</td>
<td>82</td>
</tr>
<tr>
<td>4.22</td>
<td>Effects of 7% lime and 40% ash (FA) on mix proportion {1:1.3:3}</td>
<td>99</td>
</tr>
<tr>
<td>4.23</td>
<td>Effects of 7% lime and 40% ash (FA) on mix proportion {1:1.5:3.5}</td>
<td>84</td>
</tr>
<tr>
<td>4.24</td>
<td>Effects of 7% lime and 40% ash (FA) on mix proportion {1:1.5:3}</td>
<td>84</td>
</tr>
<tr>
<td>4.25</td>
<td>Effects of 7% lime and 40% ash (FA) on mix proportion {1:1:2.5}</td>
<td>85</td>
</tr>
<tr>
<td>4.26</td>
<td>Effects of 7% lime and 40% ash (FA) on mix proportion {1:2.5:5}</td>
<td>85</td>
</tr>
<tr>
<td>4.27</td>
<td>Compressive strength of concrete made of PSC using slag aggregate verses age</td>
<td>86</td>
</tr>
<tr>
<td>4.28</td>
<td>Compressive strength of concrete made of PPC using slag aggregate verses age</td>
<td>87</td>
</tr>
</tbody>
</table>
4.29 Compressive strength of concrete made of PSC & PPC using slag aggregate 87
4.30 Compressive strength of concrete made of PSC & PPC containing natural coarse aggregates & slag aggregate. 89
4.31 Compressive strength of concrete made of OPC with ferrochrome slag as coarse aggregate verses lime and ferrochrome ash content 91
4.32 Compressive strength of concrete made of OPC blended with lime & ferrochrome ash with ferrochrome slag aggregate verses age 92
4.33 Compressive strength concrete made of OPC containing natural and ferrochrome slag coarse aggregates 94
4.34 Flexural strength of concrete made of PSC verses lime content 95
4.35 Flexural strength concrete made of PSC verses age 95
4.36 Flexural strength of concrete made of PPC verses lime content 96
4.37 Flexural strength of concrete made of PPC verses age 97
4.38 Flexural strength of concrete made of PSC&PPC verses lime at 35 days 98
4.39 Flexural strength of concrete made of PSC& PPC verses Lime at 42 Days 98
4.40 Flexural strength of concrete made of OPC verses lime ferrochrome ash content 100
4.41 Flexural strength of concrete made of OPC blended with lime & ferrochrome ash verses age 101
4.42 Flexural strength of concrete made of PSC using natural & slag aggregate verses age 102
4.43 Flexural strength of concrete made of PPC verses age using slag aggregate verses age 103
4.44 Flexural strength of concrete made of PSC & PPC containing natural coarse aggregates & slag aggregate 104
4.45 Flexural strength of concrete made of OPC with ferrochrome slag as coarse aggregate verses lime ferrochrome ash content 106
4.46 Flexural strength of OPC blended with lime & ferrochrome ash with ferrochrome slag as coarse aggregate verses age 107
4.47 Comparison of flexural strength between concrete made of OPC containing natural and ferrochrome slag coarse aggregates 109
4.48 Splitting tensile strength of concrete made of OPC verses lime ferrochrome ash content
4.49 Splitting tensile strength of concrete made of OPC blended with lime & ferrochrome ash verses age
4.50 Splitting tensile strength of concrete made of PSC using natural & slag aggregate verses age
4.51 Splitting tensile strength of concrete made of PPC using slag aggregate verses age
4.52 Splitting tensile strength of concrete made of PSC & PPC containing natural & slag coarse aggregate
4.53 Splitting tensile strength concrete made of OPC with ferrochrome slag as coarse aggregate verses lime and ferrochrome ash content
4.54 Splitting tensile strength concrete made of OPC blended with Lime ferrochrome ash with ferrochrome slag as coarse aggregate verses age
4.55 Comparison splitting tensile strength between concrete made with natural and slag coarse aggregate
4.56 Effect of lime & ferrochrome ash on bond strength
4.57 Effect of age on bond strength of concrete made of OPC blended with lime & ferrochrome ash
4.58 Effect of lime and ferrochrome ash on bond strength of concrete made of OPC containing ferrochrome slag as coarse aggregates
4.59 Effect of age on bond strength of concrete made of OPC blended with lime & ferrochrome ash, containing ferrochrome slag as coarse aggregate.
4.60 Comparison of bond strength between concrete made with natural coarse aggregates & ferrochrome slag coarse aggregates
4.61 Effect of lime & ferrochrome ash on modulus of elasticity
4.62 Modulus of elasticity of concrete made of OPC blended with lime &ferrochrome ash verses age
4.63 Effect of lime and ferrochrome ash on modulus of elasticity of concrete made of OPC containing ferrochrome slag aggregates
4.64 Effect of age on modulus of elasticity of concrete made of OPC blended with lime & ferrochrome ash, containing ferrochrome slag as coarse aggregate.

4.65 Comparison of modulus of elasticity between concrete made with natural coarse aggregates & ferrochrome slag coarse aggregates.

4.66 Effect of lime & ferrochrome ash on permeability.

4.67 Effect of age on permeability of concrete made of OPC blended with lime & ferrochrome ash.

4.68 Effect of lime and ferrochrome ash on permeability of concrete made of OPC containing ferrochrome slag as coarse aggregates.

4.69 Effect of age on coefficient of permeability of concrete made of OPC blended with lime & ferrochrome ash with ferrochrome slag.

4.70 Effect of lime and ferrochrome ash on coefficient of permeability of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates.

4.71 Effect of lime & ferrochrome ash on abrasion resistance.

4.72 Depth of wear (28 days) versus abrasion time.

4.73 Depth of wear (91 days) versus abrasion time.

4.74 Depth of wear (180 days) versus abrasion time.

4.75 Effect of age on abrasion resistance of concrete made of OPC blended with lime & ferrochrome ash.

4.76 Effect of lime and ferrochrome ash on abrasion of concrete made of OPC containing ferrochrome slag coarse aggregates.

4.77 Depth of wear (28 days) versus abrasion time.

4.78 Depth of wear (91 days) versus abrasion time.

4.79 Depth of wear (180 days) versus abrasion time.

4.80 Effect of age on abrasion resistance of concrete made of OPC blended with lime & ferrochrome ash, containing ferrochrome slag as coarse aggregate.

4.81 Effect of lime and ferrochrome ash on abrasion of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates.
4.82 Effect of lime and ferrochrome ash on strength loss in sulphuric acid solution 150
4.83 Effect of lime and ferrochrome ash on weight loss in sulphuric acid solution 151
4.84 Effect of age on acid resistance of concrete made of OPC blended with lime & ferrochrome ash 152
4.85 Effect of age on acid resistance of concrete made of OPC blended with lime & ferrochrome ash 153
4.86 Effect of lime and ferrochrome ash on acid resistance (strength loss) of concrete made of OPC containing ferrochrome slag aggregates 154
4.87 Effect of lime and ferrochrome ash on acid resistance (weight loss) of concrete made of OPC containing ferrochrome slag as coarse aggregates 155
4.88 Effect of age on acid resistance (strength loss) of concrete made of OPC blended with lime & ferrochrome ash containing ferrochrome slag coarse aggregate 156
4.89 Effect of age on acid resistance (weight loss) of concrete made of OPC blended with lime & ferrochrome ash, containing ferrochrome slag coarse aggregate 157
4.90 Effect of lime and ferrochrome ash on acid resistance (strength loss) of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates 158
4.91 Effect of lime and ferrochrome ash on acid resistance (weight loss) of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates 159
4.92 Effect of lime on sulphate resistance (strength loss) of concrete made of OPC blended with ferrochrome ash 160
4.93 Effect of lime on sulphate resistance (weight loss) of concrete made of OPC blended with ferrochrome ash 161
4.94 Effect of age on acid resistance (strength loss) of concrete made of OPC blended with lime & ferrochrome ash 162
4.95 Effect of age on sulphate resistance (weight loss) of concrete made of OPC blended with lime & Ferrochrome Ash 163
4.96 Effect of lime on sulphate resistance (strength loss) of concrete made of OPC blended with ferrochrome ash & containing ferrochrome slag as coarse aggregates

4.97 Effect of lime on sulphate resistance (weight loss) of concrete made of OPC blended with ferrochrome ash & containing ferrochrome slag as coarse aggregates

4.98 Effect of age on sulphate resistance (strength loss) of concrete made of OPC blended with lime & ferrochrome ash containing ferrochrome slag coarse aggregate

4.99 Effect of age on sulphate resistance (weight loss) of concrete made of OPC blended with lime & ferrochrome ash, containing ferrochrome slag coarse aggregate

4.100 Effect of lime and ferrochrome ash on sulphate resistance (strength loss) of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates

4.101 Effect of lime and ferrochrome ash on sulphate resistance (weight Loss) of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates

4.102 Effect of lime & ferrochrome ash on sorptivity at 28 days

4.103 Effect of lime & ferrochrome ash on sorptivity at 91 days

4.104 Effect of lime & ferrochrome ash on sorptivity at 180 days

4.105 Effect of age on sorptivity of concrete made of OPC blended with Lime & ferrochrome ash

4.106 Effect of lime & ferrochrome ash on sorptivity at 28 days

4.107 Effect of lime & ferrochrome ash on sorptivity at 91 days.

4.108 Effect of lime & ferrochrome ash on sorptivity at 180 days

4.109 Effect of age on Sorptivity of concrete made of OPC blended with lime & ferrochrome ash

4.110 Effect of lime and ferrochrome ash on sorptivity of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates.

4.111 Effect of lime & ferrochrome ash on USPV

4.112 Effect of age on Ultra Sonic Pulse Velocity (USPV) of concrete made of OPC blended with lime & ferrochrome ash
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.113</td>
<td>Effect of lime & ferrochrome ash on USPV</td>
</tr>
<tr>
<td>4.114</td>
<td>Effect of age on ultra sonic pulse velocity (USPV) of concrete made of OPC blended with lime & ferrochrome ash, containing ferrochrome slag as coarse aggregate.</td>
</tr>
<tr>
<td>4.115</td>
<td>Effect of lime and ferrochrome ash on USPV of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates.</td>
</tr>
<tr>
<td>4.116</td>
<td>Effect of lime and ferrochrome ash on rebound hammer test of concrete made of OPC containing natural coarse aggregates & ferrochrome slag as coarse aggregates</td>
</tr>
<tr>
<td>4.116(a)</td>
<td>Details of reinforcement of beam with natural coarse aggregate</td>
</tr>
<tr>
<td>4.117</td>
<td>Load deflection curve of normal concrete beam</td>
</tr>
<tr>
<td>4.118</td>
<td>Load deflection curve of ferrochrome ash concrete beam</td>
</tr>
<tr>
<td>4.119</td>
<td>Superimposition load deflection relations</td>
</tr>
<tr>
<td>4.120</td>
<td>Excessive deflection and cracking</td>
</tr>
<tr>
<td>4.121</td>
<td>Failure of beam by crushing of compression concrete</td>
</tr>
<tr>
<td>4.122</td>
<td>Details of reinforcement of beam with slag coarse aggregate</td>
</tr>
<tr>
<td>4.123</td>
<td>Load deflection curve of normal concrete beam without ferrochrome ash</td>
</tr>
<tr>
<td>4.124</td>
<td>Load deflection curve ferrochrome ash concrete beam</td>
</tr>
<tr>
<td>4.125</td>
<td>Superimposition load deflection relations</td>
</tr>
<tr>
<td>4.126</td>
<td>Excessive deflection and cracking</td>
</tr>
<tr>
<td>4.127</td>
<td>Failure of beam by crushing of compression concrete</td>
</tr>
<tr>
<td>4.128</td>
<td>Compressive strength verses splitting tensile strength</td>
</tr>
<tr>
<td>4.129</td>
<td>Compressive strength verses modulus of elasticity</td>
</tr>
<tr>
<td>4.130</td>
<td>Compressive strength verses flexural strength</td>
</tr>
<tr>
<td>4.131</td>
<td>Compressive strength verses bond strength</td>
</tr>
<tr>
<td>4.132</td>
<td>Splitting tensile strength verses modulus of elasticity</td>
</tr>
<tr>
<td>4.133</td>
<td>Modulus of elasticity verses splitting tensile strength</td>
</tr>
<tr>
<td>4.134</td>
<td>Splitting tensile strength verses bond strength</td>
</tr>
<tr>
<td>4.135</td>
<td>Splitting tensile strength verses flexural strength</td>
</tr>
<tr>
<td>4.136</td>
<td>Flexural strength verses bond strength</td>
</tr>
<tr>
<td>4.137</td>
<td>Bond strength verses modulus of elasticity</td>
</tr>
<tr>
<td>4.138</td>
<td>Compressive strength verses USPV</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.139</td>
<td>Splitting tensile strength verses USPV</td>
</tr>
<tr>
<td>4.140</td>
<td>Flexural strength verses USPV</td>
</tr>
<tr>
<td>4.141</td>
<td>Bond strength verses USPV</td>
</tr>
<tr>
<td>4.142</td>
<td>Modulus of elasticity verses USPV</td>
</tr>
<tr>
<td>4.143</td>
<td>Permeability verses abrasion</td>
</tr>
<tr>
<td>4.144</td>
<td>Permeability verses strength loss in acid</td>
</tr>
<tr>
<td>4.145</td>
<td>Permeability verses weight loss in acid</td>
</tr>
<tr>
<td>4.146</td>
<td>Permeability verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.147</td>
<td>Permeability verses weight loss in sulphate</td>
</tr>
<tr>
<td>4.148</td>
<td>Abrasion verses strength loss in acid</td>
</tr>
<tr>
<td>4.149</td>
<td>Abrasion verses weight loss in acid</td>
</tr>
<tr>
<td>4.150</td>
<td>Abrasion verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.151</td>
<td>Abrasion verses weight loss in sulphate</td>
</tr>
<tr>
<td>4.152</td>
<td>Permeability verses USPV</td>
</tr>
<tr>
<td>4.153</td>
<td>Abrasion verses USPV</td>
</tr>
<tr>
<td>4.154</td>
<td>Strength loss in acid verses USPV</td>
</tr>
<tr>
<td>4.155</td>
<td>Strength loss in sulphate verses USPV</td>
</tr>
<tr>
<td>4.156</td>
<td>Compressive strength verses permeability</td>
</tr>
<tr>
<td>4.157</td>
<td>Compressive strength verses abrasion</td>
</tr>
<tr>
<td>4.158</td>
<td>Compressive strength verses strength losses in acid</td>
</tr>
<tr>
<td>4.159</td>
<td>Compressive strength verses strength losses in sulphate</td>
</tr>
<tr>
<td>4.160</td>
<td>Flexural strength verses permeability</td>
</tr>
<tr>
<td>4.161</td>
<td>Flexural strength verses abrasion</td>
</tr>
<tr>
<td>4.162</td>
<td>Flexural strength verses strength losses in acid</td>
</tr>
<tr>
<td>4.163</td>
<td>Flexural strength verses strength losses in sulphate</td>
</tr>
<tr>
<td>4.164</td>
<td>Splitting tensile strength verses permeability</td>
</tr>
<tr>
<td>4.165</td>
<td>Splitting tensile strength verses abrasion</td>
</tr>
<tr>
<td>4.166</td>
<td>Splitting tensile strength verses strength losses in acid</td>
</tr>
<tr>
<td>4.167</td>
<td>Splitting tensile strength verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.168</td>
<td>Bond strength verses permeability</td>
</tr>
<tr>
<td>4.169</td>
<td>Bond strength verses abrasion</td>
</tr>
<tr>
<td>4.170</td>
<td>Bond strength verses strength loss in acid</td>
</tr>
<tr>
<td>4.171</td>
<td>Bond strength verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.172</td>
<td>Modulus of elasticity verses permeability</td>
</tr>
<tr>
<td>4.173</td>
<td>Modulus of elasticity verses abrasion</td>
</tr>
<tr>
<td>4.174</td>
<td>Modulus of elasticity verses strength loss in acid</td>
</tr>
<tr>
<td>4.175</td>
<td>Modulus of elasticity verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.176</td>
<td>Compressive strength verses splitting tensile strength</td>
</tr>
<tr>
<td>4.177</td>
<td>Compressive strength verses modulus of elasticity</td>
</tr>
<tr>
<td>4.178</td>
<td>Compressive strength verses flexural strength</td>
</tr>
<tr>
<td>4.179</td>
<td>Compressive strength verses bond strength</td>
</tr>
<tr>
<td>4.180</td>
<td>Splitting tensile strength verses modulus of elasticity</td>
</tr>
<tr>
<td>4.181</td>
<td>Splitting tensile strength verses bond strength</td>
</tr>
<tr>
<td>4.182</td>
<td>Splitting tensile strength verses flexural strength</td>
</tr>
<tr>
<td>4.183</td>
<td>Flexural strength verses bond strength</td>
</tr>
<tr>
<td>4.184</td>
<td>Flexural strength verses modulus of elasticity</td>
</tr>
<tr>
<td>4.185</td>
<td>Bond strength verses modulus of elasticity</td>
</tr>
<tr>
<td>4.186</td>
<td>Compressive strength verses USPV</td>
</tr>
<tr>
<td>4.187</td>
<td>Splitting tensile strength verses USPV</td>
</tr>
<tr>
<td>4.188</td>
<td>Flexural strength verses USPV</td>
</tr>
<tr>
<td>4.189</td>
<td>Bond strength verses USPV</td>
</tr>
<tr>
<td>4.190</td>
<td>Modulus of elasticity verses USPV</td>
</tr>
<tr>
<td>4.191</td>
<td>Permeability verses abrasion</td>
</tr>
<tr>
<td>4.192</td>
<td>Permeability verses strength loss in acid</td>
</tr>
<tr>
<td>4.193</td>
<td>Permeability verses weight loss in acid</td>
</tr>
<tr>
<td>4.194</td>
<td>Permeability verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.195</td>
<td>Permeability verses weight loss in sulphate</td>
</tr>
<tr>
<td>4.196</td>
<td>Abrasion verses strength loss in acid</td>
</tr>
<tr>
<td>4.197</td>
<td>Abrasion verses weight loss in acid</td>
</tr>
<tr>
<td>4.198</td>
<td>Abrasion verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.199</td>
<td>Abrasion verses weight loss in sulphate</td>
</tr>
<tr>
<td>4.200</td>
<td>Permeability verses USPV</td>
</tr>
<tr>
<td>4.201</td>
<td>Abrasion verses USPV</td>
</tr>
<tr>
<td>4.202</td>
<td>Strength loss in acid verses USPV</td>
</tr>
<tr>
<td>4.203</td>
<td>Strength loss in sulphate verses USPV</td>
</tr>
<tr>
<td>4.204</td>
<td>Compressive strength verses permeability</td>
</tr>
<tr>
<td>4.205</td>
<td>Compressive strength verses abrasion</td>
</tr>
<tr>
<td>4.206</td>
<td>Compressive strength verses strength losses in acid</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>4.207</td>
<td>Compressive strength verses strength losses in sulphate</td>
</tr>
<tr>
<td>4.208</td>
<td>Flexural strength verses permeability</td>
</tr>
<tr>
<td>4.209</td>
<td>Flexural strength verses abrasion</td>
</tr>
<tr>
<td>4.210</td>
<td>Flexural strength verses strength losses in acid</td>
</tr>
<tr>
<td>4.211</td>
<td>Flexural strength verses strength losses in sulphate</td>
</tr>
<tr>
<td>4.212</td>
<td>Splitting tensile strength verses permeability</td>
</tr>
<tr>
<td>4.213</td>
<td>Splitting tensile strength verses abrasion</td>
</tr>
<tr>
<td>4.214</td>
<td>Splitting tensile strength verses strength losses in acid</td>
</tr>
<tr>
<td>4.215</td>
<td>Splitting tensile strength verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.216</td>
<td>Bond strength verses permeability</td>
</tr>
<tr>
<td>4.217</td>
<td>Bond strength verses abrasion</td>
</tr>
<tr>
<td>4.218</td>
<td>Bond strength verses strength loss in acid</td>
</tr>
<tr>
<td>4.219</td>
<td>Bond strength verses strength loss in sulphate</td>
</tr>
<tr>
<td>4.220</td>
<td>Modulus of elasticity verses permeability</td>
</tr>
<tr>
<td>4.221</td>
<td>Modulus of elasticity verses abrasion</td>
</tr>
<tr>
<td>4.222</td>
<td>Modulus of elasticity verses strength loss in acid</td>
</tr>
<tr>
<td>4.223</td>
<td>Modulus of elasticity verses strength loss in sulphate</td>
</tr>
</tbody>
</table>