CONTENTS

1. Introduction 1
 1.1 Accelerated vulcanisation 2
 1.2 Natural and synthetic rubbers 4
 1.3 Mechanism of rubber vulcanisation 5
 1.4 Classification of accelerators 9
 1.5 Single accelerator systems 10
 1.6 Binary accelerator systems 11
 1.7 Low temperature vulcanisation 13
 References 18

2. Experimental techniques 24
 2.1 Elastomers 24
 2.2 Compounding ingredients 25
 2.3 Experimental methods 28
 2.4 Compounding of latex 29
 2.5 Evaluation of physical properties 31
 2.6 Chemical test methods 34
 2.7 Morphology studies 36
 References 37

3. Preparation, characterisation and use of zinc xanthate accelerators in natural rubber 38
 3.1 Preparation and characterisation of xanthates 40
 3.2 Cure characteristics of NR gum compounds containing zinc xanthates 51
 References 54

4. Studies on the use of zinc xanthate accelerators alone and in combination with ZDC for the curing of NR at different temperatures 55
 4.1 Use of zinc xanthate accelerators in natural rubber 60
 4.2 NR vulcanizates containing zinc xanthate/ZDC 73
 4.3 Room temperature vulcanization of NR and NR latex 91
 References 96
5. Use of zinc xanthate accelerators in combination with dithiocarbamate for the curing of NBR at different temperatures
 5.1 Black filled NBR vulcanizates containing zinc xanthate/ZDC
 5.2 NBR gum vulcanizates containing zinc xanthate/ZDC
 5.3 Silica filled NBR vulcanizates containing zinc xanthate/ZDC
 5.4 Room temperature vulcanization of nitrile rubber
 References

6. Use of zinc xanthate/ZDC accelerator combination for the vulcanization of NR/BR blends at different temperatures
 6.1 Black filled NR/BR blends containing Zn(bxt)$_2$/ZDC
 References

7. Summary and conclusions

List of publications from this work