Contents

Abstract i
List of Figures xi
List of Tables xvi
List of Symbols xx
List of Abbreviations xxviii

Chapter 1 Introduction

1.1 Introduction 1
1.2 Aim of the Thesis 3
1.3 Applications of the Thesis 4
1.4 Literature Survey 5
1.5 Technical Approach 9
1.6 Organization of the Thesis 16

Chapter 2 GPS Signal Structure

2.1 Introduction 18
2.2 Modern Ground based Navigation Systems 19
 2.2.1 Very High Frequency Omni directional Range (VOR) 19
 2.2.2 Instrument Landing System (ILS) 20
 2.2.3 Microwave Landing System (MLS) 20
 2.2.4 Long Range Aid to Navigation C (LORAN C) 21
 2.2.5 OMEGA 21
 2.2.6 Dedicated Englishmen Causing Chaos Abroad (DECCA) 21
 2.2.7 Non-Directional Beacon (NDB) 22
2.3 Global Navigation Satellite System (GNSS) 22
Chapter 3 GPS Signal Propagation Characteristics and its Modeling

3.1 Introduction 50

3.2 Large-scale variations of a GPS signal 51

3.2.1 Models for Large-scale analysis 51

3.2.1.1 Hata-Okumura Model 51

3.2.1.2 Simplified Path-Loss Model 54

3.2.2 Effect of various factors on signal propagation 56
3.2.2.1 Effect of Distance 56
3.2.2.2 Effect of Frequency 56
3.2.2.3 Effect of atmosphere 56
3.2.3 Comparison of signal variations in Urban, Suburban and Rural Areas 58

3.3 Short-term variations of a GPS signal 59

3.3.1 Multipath propagation and effects 59
 3.3.1.1 Time dispersion parameters 61
 3.3.1.2 Frequency dispersion parameters 62

3.3.2 Doppler shift 63

3.3.3 Fading 65
 3.3.3.1 Flat Fading 69
 3.3.3.2 Frequency Selective Fading 70
 3.3.3.3 Fast Fading 71
 3.3.3.4 Slow Fading 71

3.3.4 Fading models of a GPS signal 71
 3.3.4.1 Rayleigh fading 72
 3.3.4.2 Rician fading 79

3.4 Bit Error Rate 82

3.5 Results and Discussion 83

3.6 Conclusions 104

Chapter 4 Satellite Position Estimation and Satellite Clock Error Analysis

4.1 Introduction 106

4.2 Six Keplerian Elements 107

4.3 Satellite Orbital parameters 109
 4.3.1 GPS Satellite Orbit Description 112
4.4 Satellite position determination

4.4.1 Satellite clock correction terms

4.4.2 Ephemeris time reference variables t_{oe} and t_k

4.4.3 Second- and third-order correction terms in the broadcast ephemeris

4.4.4 Age/Issue of Data terms

4.4.5 Satellite Clock Reference Time

4.5 Example calculations of various parameters in the SV position algorithm

4.6 GPS Satellite Clocks and Time

4.7 Satellite Clock Error

4.7.1 Relativistic effects

4.8 Results

4.9 Conclusions

Chapter 5 A Precise Navigation Solution Algorithm based on Integer Ambiguity free Carrier Phase Measurements

5.1 Introduction

5.2 Modelling of Pseudorange measurements

5.2.1 Code measurements

5.2.2 Carrier phase measurements

5.3 Existing Algorithms for Precise Navigation Solution

5.4 Least Squares Approach of Position estimation using Pseudoranges

5.4.1 Design Matrix

5.4.2 Least Squares Solution

5.5 New Navigation Solution based on Integer Ambiguity free Carrier Phase Measurements

5.6 Conclusions
Chapter 6 Data processing, Results and Discussion of the proposed navigation solution algorithm

6.1 Introduction 158

6.2 Experimental setup for data collection 159

6.3 Satellite Orbital Error estimation model 161
 6.3.1 Precise Ephemeris data 162
 6.3.2 Lagrange Interpolation Algorithm 162
 6.3.3 Projection of Error on Pseudorange 164

6.4 Estimation of Broadcast and Precise Satellite Positions 165

6.5 Validation of Satellite Positions 169

6.6 Corrected Pseudorange and Carrier Phase Estimations 173

6.7 Position Estimation using Least Squares Method 183

6.8 Position Estimation using New Navigation Solution based on Integer Ambiguity free Carrier Phase measurements 191

6.9 Conclusions 200

Chapter 7 Conclusions 201

Appendix-A Coordinate Systems 205

Appendix-B Input files data 210

Appendix-C Satellite Positions data 216

References 228

Research publications relevant to the thesis 235