CONTENTS

CHAPTER 1: INTRODUCTION 1-37

1.0 Environmental Pollution 1
1.1 Types of pollution 3
 1.1.1 Water Pollution 4
 1.1.2 Air Pollution 4
 1.1.3 Land Pollution 5
1.2 Need for environmental pollution control 6
1.3 Treatment methods 6
1.4 Pesticides 7
 1.4.1 Classification of pesticides 10
 1.4.2 Advantages of using pesticides 12
 1.4.3 Adverse effects of pesticides 12
 1.4.4 Fate of pesticides in environment 13
1.5 Treatment methods of pesticides 16
 1.5.1 Chemical degradation 17
 1.5.1.1 Hydrolysis 17
 1.5.2 Photochemical degradation 18
 1.5.3 Biological degradation 18
 1.5.3.1 Aerobic biological treatment 20
 1.5.3.2 Anaerobic biological treatment 21
 1.5.3.3 Importance of biological treatment methods 21
1.6 Bioremediation 22
 1.6.1 Principles of bioremediation 24
 1.6.2 In situ bioremediation of soil 27
 1.6.3 Ex situ bioremediation of soil 27
 1.6.3.1 Solid-phase bioremediation 29
 1.6.3.2 Slurry phase bioremediation 30
1.7 Bioaugmentation 34
 1.7.1 Bioaugmentation options 35

CHAPTER 2: LITERATURE SURVEY AND SCOPE OF THE WORK 38-49

2.0 Literature Survey 38
2.1 Environmental distribution, transport and fate of pendimethalin 40
 2.1.1 Dissipation of pendimethalin in soil 41
 2.1.2 Dissipation of pendimethalin in water 43
2.2 Pendimethalin toxicity 43
2.3 Literature survey on degradation of pendimethalin 45
 2.3.1 Aerobic soil metabolism of pendimethalin 46
2.4 Aims and objectives

CHAPTER 3: EXPERIMENTAL METHODOLOGY

3.1 Introduction
3.2 Materials
 3.2.1 Pendimethalin
 3.2.2 Chemicals
 3.2.3 Water
 3.2.4 Soils
3.3 Methods
 3.3.1 Experimental design
 3.3.2 Leaching experiments
 3.3.3 Solid phase (in situ bioremediation experiment)
 3.3.4 Slurry phase bioreactor (SPBR) experiments
 3.3.4.1 Slurry phase bioreactor configuration
 3.3.4.2 Slurry preparation
 3.3.4.2.1 Non-augmented system
 3.3.4.2.2 Augmented configured system
 3.3.4.2.2.1 Augmented inoculum
 3.3.4.3 Reactor startup and operation
 3.3.4.4 Sequence phase operation details
 3.3.4.5 Kinetics of pendimethalin degradation
 3.3.5 Optimization experiments
 3.3.5.1 Effect of soil/water ratios
 3.3.5.2 Effect of pH
 3.3.5.3 Effect of substrate concentration
 3.3.5.3.1 Degradation of pendimethalin in Sequencing operation
 3.3.6 Effect of soil nature on the degradation studies
 3.3.7 Isolation of pendimethalin degrading microorganism
 3.3.8 Effect of augmentation with isolated strain
3.4 Analytical Protocols
 3.4.1 Soil properties
 3.4.1.1 Soil pH
 3.4.1.2 Soil moisture
 3.4.1.3 Bulk density of the soil
 3.4.1.4 Specific gravity
 3.4.1.5 Organic matter of the soil
 3.4.1.6 Soil texture
 3.4.1.7 Microbial population
 3.4.2 SPBR Process evaluation parameters
 3.4.2.1 pH
 3.4.2.2 Measurement of ORP
 3.4.2.3 Measurement of DO
 3.4.2.4 Measurement of OUR
3.4.2.5 CFU estimation 76
3.4.3 Extraction of pendimethalin from soil 77
3.4.3.1 Monitoring of substrate degradation by TLC 78
3.4.3.2 Assay of pendimethalin by HPLC 78
3.4.3.3 LC-MS/MS for identification of metabolites 78

CHAPTER 4: RESULTS AND DISCUSSIONS 80-171

4.1 Soil matrices 80
4.2 Analytical protocols developed for estimation of pendimethalin 84
4.2.1 HPLC 84
4.2.2 LC-MS/MS 86
4.3 Pendimethalin leaching experiments 87
4.3.1 Leaching of pendimethalin in different soil matrices 89
4.3.2 Leaching of pendimethalin in different pH conditions 89
4.4 Solid phase (in situ) bioremediation of pendimethalin 96
4.4.1 Bioremediation in absence of sunlight (SP1) 96
4.4.2 Bioremediation in presence of sunlight (SP2) 98
4.4.3 Bioremediation by addition of N,P,K (SP3) 99
4.4.4 Bioremediation using bioaugmentation in absence of sunlight (SP4) 101
4.4.5 Bioremediation using bioaugmentation in presence of sunlight (SP5) 102
4.5 Slurry phase bioremediation 103
4.5.1 Performance evaluation of the slurry reactor 103
4.5.1.1 Non-augmented system 103
4.5.1.2 Augmented system 103
4.5.2 Evaluation of reactor performance 105
4.5.2.1 Non-augmented reactor 105
4.5.2.1.1 Variation of OUR in SPBR2 105
4.5.2.1.2 Variation of CFU in SPBR2 105
4.5.2.2 Augmented system 105
4.5.2.2.1 Variation of OUR in SPBR3 105
4.5.2.2.2 Variation of CFU in SPBR3 105
4.5.3 Bio-process monitoring for SPBR1, SPBR2 and SPBR3 107
4.5.3.1 Variation of pH 117
4.5.3.2 Variation of ORP 119
4.5.3.3 Variation of DO 120
4.5.4 Comparative performance evaluation 121
4.5.5 Kinetics 123
4.5.6 Optimization of slurry reactors 125
4.5.6.1 Performance evaluation of SPBR’s at various soil/water ratios 125
4.5.6.1.1 Performance of the reactor RSW1 127
4.5.6.1.2 Performance of the reactor RSW2 128
4.5.6.1.3 Performance of the reactor RSW3 129
4.5.6.1.4 Performance of the reactor RSW4 130
4.5.6.1.5 Performance of the reactor RSW5 131
4.5.6.1.6 Performance of the reactor RSW6
4.5.6.1.6 (a) Reactor performance at various soil/water ratios with varying pendimethalin loading rate (PLR)
4.5.6.1.7 Performance of the reactor RSW7-RSW10
4.5.6.2 Effect of pH
4.5.6.3 Effect of the substrate concentration
4.5.6.3.1 Reactors studied for two consecutive cycles (sequence operation)
4.5.6.3.2 Half-life period of pendimethalin
4.5.7 Degradation of pendimethalin in different soils
4.5.7.1 Degradation studies without bioaugmentation
4.5.7.2 Degradation studies with augmentation
4.5.8 Identification of metabolites and degradation pathway
4.5.8.1 Structural elucidation of metabolites by LC-MS/MS
4.5.8.2 Identification of metabolites in the slurry phase reactor
4.5.8.3 Metabolic pathway
4.5.9 Isolation and identification of potential bacterial strain
4.5.10 Performance of augmented reactor with isolated species

CHAPTER 5: SUMMARY AND CONCLUSIONS

REFERENCES

ANNEXURE

List of publication & Reprints