CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Chapter Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1-6</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF LITERATURE</td>
<td>7-52</td>
</tr>
<tr>
<td>3</td>
<td>MATERIALS AND METHODS</td>
<td>53-77</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS</td>
<td>78-206</td>
</tr>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>207-230</td>
</tr>
<tr>
<td>6</td>
<td>SUMMARY AND CONCLUSION</td>
<td>231-238</td>
</tr>
<tr>
<td>7.</td>
<td>REFERENCES</td>
<td>i-lx</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>REVIEW OF LITERATURE</td>
<td>7-52</td>
</tr>
<tr>
<td>2.1.</td>
<td>Phyllosphere</td>
<td></td>
</tr>
<tr>
<td>2.2.</td>
<td>Spinacia oleracea</td>
<td></td>
</tr>
<tr>
<td>2.3.</td>
<td>Modification by Microbes to Enter in Plant Structures</td>
<td></td>
</tr>
<tr>
<td>2.4.</td>
<td>Plant-Microbe Interactions</td>
<td></td>
</tr>
<tr>
<td>2.5.</td>
<td>Bacteria in Phyllosphere</td>
<td></td>
</tr>
<tr>
<td>2.6.</td>
<td>Sources of Microbes Colonizing the Phyllosphere</td>
<td></td>
</tr>
<tr>
<td>2.7.</td>
<td>Plant Growth Promoting Bacteria</td>
<td></td>
</tr>
<tr>
<td>2.8.</td>
<td>Plant Growth Promoting Attributes Exhibited by Phyllospheric Bacteria</td>
<td></td>
</tr>
<tr>
<td>2.9.</td>
<td>Screening for PGPB Strains</td>
<td></td>
</tr>
<tr>
<td>2.9.1.</td>
<td>Attributes which Enhance Plant Growth Directly</td>
<td></td>
</tr>
<tr>
<td>2.9.1.1</td>
<td>Biological Nitrogen Fixation</td>
<td></td>
</tr>
<tr>
<td>2.9.1.2</td>
<td>Phytohormones Production</td>
<td></td>
</tr>
<tr>
<td>2.9.1.2.1</td>
<td>IAA production</td>
<td></td>
</tr>
<tr>
<td>2.9.1.2.2</td>
<td>Cytokinin and Gibberellic Acid</td>
<td></td>
</tr>
<tr>
<td>2.9.1.2.3</td>
<td>Abscisic Acid</td>
<td></td>
</tr>
<tr>
<td>2.9.1.2.4</td>
<td>Ethylene</td>
<td></td>
</tr>
<tr>
<td>2.9.1.3</td>
<td>Solubilization of Important Plant Nutrients from Soil</td>
<td></td>
</tr>
<tr>
<td>2.9.1.3.1</td>
<td>Phosphate Solubilization</td>
<td></td>
</tr>
<tr>
<td>2.9.1.3.2</td>
<td>Potassium Solubilization</td>
<td></td>
</tr>
<tr>
<td>2.9.1.3.3</td>
<td>Zinc Solubilization</td>
<td></td>
</tr>
<tr>
<td>2.9.2.</td>
<td>Indirect Mechanism for Plant Growth by PGPB</td>
<td></td>
</tr>
<tr>
<td>2.9.2.1</td>
<td>Enzyme Production</td>
<td></td>
</tr>
<tr>
<td>2.9.2.2</td>
<td>Siderophore Production</td>
<td></td>
</tr>
<tr>
<td>2.9.2.3</td>
<td>Biocontrol Activity</td>
<td></td>
</tr>
<tr>
<td>2.9.2.4</td>
<td>Hydrogen cyanide (HCN) Production</td>
<td></td>
</tr>
<tr>
<td>2.9.2.5</td>
<td>Antibiotic Production</td>
<td></td>
</tr>
</tbody>
</table>
2.9.3. Induction of Systemic Disease Resistance
2.9.4. Stress Response
2.9.5. ACC deaminase Activity
2.9.6. Hydrocarbon Utilization
2.9.7. Food Safety
2.9.8. Bio-remediation
2.9.9. Bio-fertilizers
2.9.10. Applications of Phyllospheric Bacteria
2.9.11. Prospects of Studying the Useful Properties of PGPB
2.10. Commercialization of PGPB
2.11. Future Challenges
2.12. Miscellaneous

Chapter 3 MATERIALS AND METHODS 53-77

3.1. Materials
3.1.1. Chemicals Used
3.1.2. Instruments Used
3.1.3. Media Used
3.1.4. Cultures Used
3.1.5. Phyllospheric Samples used
3.2. Methods
3.2.1. Collection of Phyllospheric Samples
3.2.1.1. Isolation of Phyllospheric Bacteria
3.2.2. Screening of Phyllospheric Isolates for PGP attributes
3.2.2.1. Phosphate solubilization (Pikovskaya, 1948)
3.2.2.2. Ammonia Production (Demutskaya and Kalinichenko, 2010)
3.2.2.3. Indole-3-acetic acid (IAA) production using bacterial isolates
3.2.2.4. HCN Production
3.2.2.5. Siderophore Production
3.2.2.6. ACC deaminase Activity
3.2.2.7. In-vitro Biological Nitrogen Fixation
3.2.2.8. In vitro Antifungal activity shown by Bacterial Isolates
3.2.2.8.1. Chitinase Enzyme Activity
3.2.2.8.2. Protease Enzyme Activity
3.2.2.8.3. Isolation and Characterization of Antimicrobial Compound

3.2.2.8.3.1. Isolation of Antimicrobial Metabolites
3.2.2.8.3.2. Thin layer chromatography (TLC) profile and UV-Vis Spectrophotometric Study of the Secondary Metabolites Produced by Bacterial Isolates
3.2.2.8.3.3. Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis

3.2.2.9. *In vitro* seed germination assay

3.2.3. Characterization of Phyllospheric Bacterial Isolates
3.2.3.1. Morphological Characteristics
3.2.3.1.1. Gram Staining
3.2.3.1.2. Endospore Staining
3.2.3.2. Biochemical Characterization
3.2.3.2.1. Starch Hydrolysis
3.2.3.2.2. Catalase
3.2.3.2.3. Gelatin Hydrolysis
3.2.3.2.4. Hydrogen sulphide Production Test
3.2.3.2.5. Nitrate Reduction
3.2.3.2.6. Sugar Fermentation
3.2.3.2.7. Urease Test
3.2.3.2.8. IMViC Tests
3.2.3.2.8.1. Indole Production
3.2.3.2.10.2. Methyl Red (MR)
3.2.3.2.10.3. Voges Proskauer (VP) Tests
3.2.3.2.10.4. Citrate Utilization
3.2.3.3. Molecular Characterization of Bacterial Isolates
3.2.3.3.1. Isolation of Total Cell DNA from Bacterial Isolates
3.2.3.3.2. Genomic DNA Extraction
3.2.3.3.3. Quantification through Agarose Gel Electrophoresis
3.2.3.3.4. 16S rDNA PCR-Amplification of Bacterial Isolates
3.2.3.3.4.1. Primers
3.2.3.3.4.2. Method
3.2.3.3.4.3. Purification of Amplified PCR Product
3.2.3.3.4.4. Similarity Search by Basic Local Alignment Searching Tool (BLAST) and Phylogenetic Tree Formation
3.2.4. Optimization of Cultural Conditions
3.2.4.1. Optimization of Temperature
3.2.4.2. Optimization of pH
3.2.4.3. Heavy Metal Resistance among Bacterial Isolates
3.2.5. Pot House Experiment
3.2.6. Determination of Chlorophyll Content

CHAPTER 4 RESULTS

4.1. Isolation of Phyllospheric Bacteria
4.2. Screening of Phyllospheric Bacterial Isolates for PGP Attributes
4.2.1. Phosphate Solubilization
4.2.2. Ammonia Production
4.2.3. Indole-3-acetic acid (IAA) Production using Bacterial Isolates
4.2.4. HCN Production
4.2.5. Siderophore Production
4.2.6. ACC deaminase Activity
4.2.7. In vitro Biological Nitrogen Fixation
4.2.8. In vitro Antifungal Activity shown by Bacterial Isolates
4.2.8.1. Chitinase and Protease Enzyme Activity
4.2.8.2. Isolation and Characterization of Antimicrobial Compound
4.2.8.2.1. Thin layer Chromatography (TLC) Profile of the Secondary Metabolites Produced by Bacterial Isolates
4.2.8.2.2. Unknown Metabolic Compounds Detection Using UV-Vis Spectrophotometer
4.2.8.2.3. Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis
4.2.9. In vitro Seed Germination Assay

4.3. Characterization of Selected Bacterial Isolates

4.3.1. Morphological Characteristics of Spinach Phyllospheric Bacterial Isolates

4.3.1.1. Colony Characteristics of Selected Bacterial Isolates

4.3.1.2. Gram Staining of Selected Isolates

4.3.1.3. Endospore Formation

4.3.2. Biochemical Characterization

4.4. Molecular Characterization of Bacterial Isolates

4.4.1. Details of 16S rDNA Sequences of Selected Plant Growth Promoting Bacterial Isolates Submitted to NCBI Gene Bank

4.5. Optimization of Cultural Conditions

4.5.1. Optimization of Temperature

4.5.2. Optimization of pH

4.5.3. Heavy Metal Resistance among Bacterial Isolates

4.6. Consortium Preparation

4.6.1.1. Effect of Bacterial Consortium on S. oleracea Plant’s Growth using Pot House Experiment

4.6.1.2. Determination of Chlorophyll Content of S. oleracea Plants

4.6.2.1. Effect of Bacterial Consortium on V. radiata Growth using Pot House Experiment

4.6.2.2. Estimation of Chlorophyll Content of Vigna radiata Plant Leaves

CHAPTER 5 DISCUSSION 207-230

5.1. Isolation of Phyllospheric Bacteria

5.2. Screening of Bacterial Isolates for Multiple PGP Attributes

5.2.1. Phosphate Solubilization

5.2.2. Ammonia Production

5.2.3. IAA Production

5.2.4. Hydrogen cyanide (HCN) Production
5.2.5. Siderophore Production
5.2.6. ACC Deaminase Activity
5.2.7. *In vitro* Biological Nitrogen Fixation
5.2.8. *In vitro* Antifungal activity by Bacterial Isolates
5.2.8.1. Antifungal activity through Enzymatic Activities
5.2.8.2.1. Isolation of Antimicrobial Compound
5.2.8.2.2.1. Characterization of Unknown Metabolic Compounds using TLC Analysis
5.2.8.2.2.2. Unknown Metabolic Compounds Detection using UV-Vis Spectrophotometer
5.2.8.2.2.3. Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis
5.2.9. *In vitro* Seed Germination Assay
5.3. Optimization of Cultural Conditions
5.3.1. Optimization of Temperature
5.3.2. Optimization of pH
5.3.3. Heavy Metal Resistance among Bacterial Isolates
5.4. Consortium Preparation
5.4.1. Effect of Consortium on All Growth Parameters of *S. oleracea* and *V. radiata* Seedling after Treatment using Pot House Experiment
5.4.2. Estimation of Chlorophyll Content of *S. oleracea* and *V. radiata* Plants

CHAPTER 6 SUMMARY AND CONCLUSION

6.1. Isolation of Spinach Phyllospheric Bacteria
6.2. Screening of Bacterial Isolates for PGP Attributes
6.3. Morphological, Biochemical and Molecular Characterization of the Selected Bacterial Isolates
6.4. Optimization of Cultural Conditions for the Growth of Selected Isolates
6.5.1. Effect of Consortium on All Growth Parameters in *S. oleracea* Seedling after Treatment Using Pot House Experiment
6.5.2. Effect of Consortium on All Growth Parameters in *V. radiata* Seedling after Treatment using Pot House Experiment

CHAPTER 7 REFERENCES i-lx
APPENDICES
LIST OF PUBLICATIONS