CONTENTS

INTRODUCTION

OBJECTIVES OF THE PRESENT STUDY

LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of Epilepsy</td>
<td>7</td>
</tr>
<tr>
<td>Epidemiology of Epilepsy</td>
<td>7</td>
</tr>
<tr>
<td>Etiology of Epilepsy</td>
<td>8</td>
</tr>
<tr>
<td>Mortality</td>
<td>9</td>
</tr>
<tr>
<td>Classification of Epileptic Seizures</td>
<td>9</td>
</tr>
<tr>
<td>Pilocarpine</td>
<td>10</td>
</tr>
<tr>
<td>Role of Neurotransmitters in Epilepsy</td>
<td>12</td>
</tr>
<tr>
<td>Epinephrine and Norepinephrine</td>
<td>12</td>
</tr>
<tr>
<td>Dopamine</td>
<td>13</td>
</tr>
<tr>
<td>GABA</td>
<td>15</td>
</tr>
<tr>
<td>Acetylcholine</td>
<td>16</td>
</tr>
<tr>
<td>Serotonin synthesis and metabolism</td>
<td>18</td>
</tr>
<tr>
<td>Anatomy of Serotonin System</td>
<td>19</td>
</tr>
<tr>
<td>Serotonin Receptors</td>
<td>20</td>
</tr>
<tr>
<td>Classification of Serotonin receptors</td>
<td>21</td>
</tr>
<tr>
<td>5-HT₁ Receptor</td>
<td>21</td>
</tr>
<tr>
<td>5-HT₂ Receptor</td>
<td>22</td>
</tr>
<tr>
<td>5-HT₃ Receptor</td>
<td>23</td>
</tr>
<tr>
<td>5-HT₄ Receptor</td>
<td>24</td>
</tr>
<tr>
<td>5-HT₅ Receptor</td>
<td>24</td>
</tr>
<tr>
<td>5-HT₆ Receptor</td>
<td>24</td>
</tr>
<tr>
<td>5-HT₇ Receptor</td>
<td>25</td>
</tr>
<tr>
<td>5-HT₂c Receptor</td>
<td>25</td>
</tr>
</tbody>
</table>
Functional Effects Mediated via the 5-HT\textsubscript{2c} Receptor 26
Serotonin and Serotonin Receptors in Epilepsy 27
5-HT\textsubscript{2c} Receptors and Epilepsy 30
Glutamate 32
Glutamate and Glutamate Receptors in Epilepsy 34
Ionotropic Receptors - NMDA Receptors 35
Functional Effects Mediated via the NMDA Receptor 36
NMDA receptors and Epilepsy 37
Metabotropic Glutamate Receptors 37
Glutamate Transporter 39
Signal transduction through Second Messengers 40
Inositol 1,4,5-trisphosphate (IP3) 40
Cyclic Guanosine Monophosphate (cGMP) 41
Cyclic Adenosine Monophosphate (cAMP) 42
Pathophysiology of Temporal Lobe Epilepsy 43
Cell Loss 44
Axon sprouting 45
Gliosis 46
Dendritic Changes 46
Mossy fibre sprouting and impaired inhibition 47
Epilepsy and personality disorder 48
Neuroprotection and Drugs in Epilepsy 49
\textit{Bacopa monnieri} (Linn.) Pennel 50

MATERIALS AND METHODS

Chemicals used and their sources 56
Biochemicals 56
Radiochemicals 56
Molecular Biology Chemicals
Confocal Dyes
Animals
Plant Material
Preparation of Bacopa monnieri Plant Extract
Epilepsy Induction
Determination of Anti-Epileptic Potential of Bacopa monnieri
Animal Groups
Estimation of Blood Glucose
Tissue preparation
Quantification of brain monoamines and their metabolites in the experimental groups of rats.
5-HT$_{2C}$ Receptor Binding Studies Using [3H] Radioligands in the brain regions of control and experimental rats
5-HT$_{2C}$ Receptor Binding Studies Using [3H] mesulergine
NMDA Receptor Binding Studies Using [3H] Radioligands in the Brain Regions of control and experimental rats
NMDA Receptor Binding Studies Using [3H] MK-801
Protein determination
Analysis of the Receptor Binding Data
Linear regression analysis for Scatchard plots
Gene Expression Studies 5-HT$_{2C}$, NMDA2b, mGlu5 and GLAST receptor indifferent brain regions of control and experimental Rats
Preparation of RNA
Isolation of RNA
cDNA Synthesis
Real-Time PCR Assay
IP3 content in the brain regions of control and
experimental rats in vivo 66
Principle of the assay 66
Assay Protocol 66
cGMP content in the brain regions of control and experimental rats in vivo 67
Principle of the assay 67
Assay Protocol 68
cAMP content in the brain regions of control and experimental rats in vivo 68
Principle of the assay 69
Assay Protocol 69
Elevated Plus Maze 70
Rotarod Test 71
Social Interaction Test 71
Forced Swim Test 71
Confocal Studies 72
Statistics 72

RESULTS

Body weight, feed intake, water consumption and blood glucose level in control and experimental groups of rats 74
5-HT and 5-HIAA content (nmoles/g wet wt.) in the cerebral cortex of control and experimental groups of rats 74
5-HT and 5-HIAA content (nmoles/g wet wt.) in the hippocampus of control and experimental groups of rats 75
5-HT and 5-HIAA content (nmoles/g wet wt.) in the cerebellum of control and experimental groups of rats 75
5-HT and 5-HIAA content (nmoles/g wet wt.) in the brainstem of control and experimental groups of rats 76

Brain 5-HT_{2C} receptor alterations in the Control and Experimental groups of Rats 76
Cerebral Cortex

Scatchard analysis using [3H]mesulergine against mesulergine

Real-Time PCR analysis of 5-HT$_{2C}$ Receptors

Hippocampus

Scatchard analysis using [3H]mesulergine against mesulergine

Real-Time PCR analysis of 5-HT$_{2C}$ Receptors

Cerebellum

Scatchard analysis using [3H]mesulergine against mesulergine

Real-Time PCR analysis of 5-HT$_{2C}$ Receptors

Brain NMDA receptor alterations in the control and experimental groups of rats

Cerebral Cortex

Scatchard analysis using [3H]MK-801 against MK-801

Real-Time PCR analysis of NMDA2b Receptors

Real-Time PCR analysis of mGLU5 Receptors

Real-Time PCR analysis of GLAST

Hippocampus

Scatchard analysis using [3H]MK-801 against MK-801

Real-Time PCR analysis of NMDA2b Receptors

Real-Time PCR analysis of mGLU5 Receptors

Real-Time PCR analysis of GLAST

Cerebellum

Scatchard analysis using [3H]MK-801 against MK-801

Real-Time PCR analysis of NMDA2b Receptors

Real-Time PCR analysis of mGLU5 Receptors
Real-Time PCR analysis of GLAST

Brainstem

Real-Time PCR analysis of NMDA2b Receptors

Real-Time PCR analysis of mGLU5 Receptors

Real-Time PCR analysis of GLAST

IP3 content in the cerebral cortex of control and experimental groups of rats

IP3 content in the hippocampus of control and experimental groups of rats

IP3 content in the cerebellum of control and experimental groups of rats

IP3 content in the brainstem of control and experimental groups of rats

cGMP content in the cerebral cortex of control and experimental groups of rats

cGMP content in the hippocampus of control and experimental groups of rats

cGMP content in the cerebellum of control and experimental groups of rats

cGMP content in the brainstem of control and experimental groups of rats

cAMP content in the cerebral cortex of control and experimental groups of rats

cAMP content in the hippocampus of control and experimental groups of rats

cAMP content in the cerebellum of control and experimental groups of rats

cAMP content in the brainstem of control and experimental groups of rats

Rotarod Performance of control and experimental groups of rats
Elevated Plus Maze Test in the control and experimental rats 86
Behavioural response of control and experimental rats in open and closed arm entry (counts/5 minutes) in elevated plus maze test 86
Behavioural response of control and experimental rats in time spent (seconds/5 minutes) in open and closed arms in elevated plus maze test 87
Behavioural response of control and experimental rats in head dipping attempts, stretched attend posture and grooming attempts in elevated plus-maze test 87
Social Interaction Test in the control and experimental rats 88
Behavioral response of control and experimental rats at allogrooming, sniffing, aggressive attacks and following the partner in Social Interaction Test (counts/10 minutes) 88
Behavioral response of control and experimental rats in time spent in social interaction test (seconds/10 minutes) 88
Behavioral response of control and experimental rats in Forced Swim Test 88
Confocal Studies 89

Cerebral Cortex 89
5-HT$_{2C}$ receptor antibody staining in control and experimental groups of rats 89
NMDA2b receptor antibody staining in control and experimental groups of rats 89
mGlu5 receptor antibody staining in control and experimental groups of rats 89

Cerebellum 90
5-HT$_{2C}$ receptor antibody staining in control and experimental groups of rats 90
NMDA2b receptor antibody staining in control and experimental groups of rats 90
mGlu5 receptor antibody staining in control and experimental groups of rats 90