LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>BTS Block diagram</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Base station-Wireless Network</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Thermal design process</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Timeline Plot of Transistor Counts on Intel Processors</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Based on Moore's Prediction</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Time-line Plot of Intel Microprocessor Power Dissipation</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Power Dissipation Trend in Telecommunications and Computing System</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Failure in Electronics Components</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Thermal Management Techniques and Heat Removal Capacity</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Component level thermal modeling</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Different type of packages</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic of Typical Thermoelectric Cooler</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic of Refrigeration Cycle</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>Cool Chips are based off of a technology called a Thermionic Converter</td>
<td>25</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic on how the Cool Chips Work</td>
<td>25</td>
</tr>
<tr>
<td>2.12</td>
<td>Typical Commercial Package MOSFET:</td>
<td>40</td>
</tr>
</tbody>
</table>
(a) N-Channel Enhancement Mode MOSFET Cross-section, and
(b) Schematic of MOSFET

3.1 experimental test setup with data acquisition system 55
3.2 temperature test setup 58
3.3 Air flow measuring chamber 59
3.4 vibration test setup 62
3.5 test setup photograph of BTS with PIU-A 66
3.6 Location of acceleration sensor in BTS 67

3.7 Hemi-Anechoic Eckel Design 69
3.8 Acoustic test setup 74

4.1 Front View of BTS Geometric Model and Thermal Model 75
4.2 Rear view of BTS Geometric Model and Thermal Model 76
4.3 Bottom View of BTS Geometric Model and Thermal Model 76
4.4 View with out Bottom Cover Geometric Model and Thermal Model 77
4.5 Upper Chassis of BTS without Top Cover 77
4.6 Arrangement of Boards in the BTS Unit 78

4.7 System Board Component Layout 80
4.8 Base Band Component Layout 82
4.9 Power Board Component Layout

4.10 Fan Curve details

5.1 Temperature profile of SB

5.2 Temperature profile of BB Top side

5.3 Temperature profile of BB Bottom side

5.4 Temperature profile of PB

5.5 Surface temperature of chassis

5.6 Outlet air temperature distribution

5.7 Velocity profile over the top heat sink of the chassis

5.8 Velocity profile through vent

5.9 Fan Operating curve details

5.10 Temperature profile of SB

5.11 Temperature profile of BB Top side

5.12 Temperature profile of BB Bottom side

5.13 Temperature profile of PB

5.14 Surface temperature of chassis

5.15 Internal ambient temperature of chassis

5.16 Outlet air temperature distribution
5.17 Velocity profile over the top heat sink of the chassis 103

5.18 Velocity profile through vent 104

5.19 Fan Operating curve details 104

5.20 Thermal model with 2*92mm Fan assembly 112

5.21 Block diagram of fan position considered for Thermal simulation 113

5.22 Vendor data fan curve 92mm fan 114

5.23 Temperature contour for SB 115

5.24 Temperature contour for BB 115

5.25 Temperature contour for PB 116

5.26 Temperature contour for Exit air 116

5.27 Temperature contour for Chassis 116

5.28 Flow distribution through upper chassis 117

5.29 Flow distribution through Vents & near obstructions 117

5.30 Fan operating curve for Left & Right Fan 118

5.31 Block diagram of Left fan failure 123

5.32 Block diagram of Right fan failure 123

5.33 Flow distribution through the fan (Left fan failure) 124

5.34 Flow distribution through the fan (Right fan failure) 124

5.35 Thermal model with 3*92mm Fan assembly 128
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.36</td>
<td>Block diagram of fan position in 3*92mm Fan Assembly</td>
<td>128</td>
</tr>
<tr>
<td>5.37</td>
<td>Temperature contour for SB</td>
<td>129</td>
</tr>
<tr>
<td>5.38</td>
<td>Temperature contour for BB</td>
<td>129</td>
</tr>
<tr>
<td>5.39</td>
<td>Temperature contour for PB</td>
<td>130</td>
</tr>
<tr>
<td>5.40</td>
<td>Temperature contour for Exit air</td>
<td>130</td>
</tr>
<tr>
<td>5.41</td>
<td>Temperature contour for Chassis</td>
<td>130</td>
</tr>
<tr>
<td>5.42</td>
<td>Flow distribution through upper chassis</td>
<td>131</td>
</tr>
<tr>
<td>5.43</td>
<td>Flow distribution through Vents & near obstructions</td>
<td>132</td>
</tr>
<tr>
<td>5.44</td>
<td>Operating Condition for Left, Middle and Right fan</td>
<td>133</td>
</tr>
<tr>
<td>5.45</td>
<td>Block diagram of Left fan failure in 3*92mm fan assembly</td>
<td>138</td>
</tr>
<tr>
<td>5.46</td>
<td>Block diagram of Middle fan failure in 3*92mm fan assembly</td>
<td>138</td>
</tr>
<tr>
<td>5.47</td>
<td>Block diagram of Right fan failure in 3*92mm fan assembly</td>
<td>138</td>
</tr>
<tr>
<td>5.48</td>
<td>Flow distribution through Left failed fan</td>
<td>139</td>
</tr>
<tr>
<td>5.49</td>
<td>Flow distribution through Middle failed fan</td>
<td>139</td>
</tr>
<tr>
<td>5.50</td>
<td>Flow distribution through Right failed fan</td>
<td>139</td>
</tr>
<tr>
<td>5.51</td>
<td>Vendor specified curve details for 60mm and 92mm fan</td>
<td>143</td>
</tr>
<tr>
<td>5.52</td>
<td>Fan curve at different speed</td>
<td>146</td>
</tr>
<tr>
<td>5.53</td>
<td>Operating curve for 60mm fan at 85% of maximum speed</td>
<td>149</td>
</tr>
</tbody>
</table>
6.35 Cooling plate along with face plate (Bottom view)
6.36 Temperature profile of PIU-ATop side
6.37 Temperature profile of PIU-ABottom side
6.38 Temperature profile of cooling plate (Top side)
6.39 Temperature profile of cooling plate (Bottom side)
6.40 Air temperature profile in PIU region
6.41 Velocity plot in the system
6.42 Temperature profile of PIU-ATop side
6.43 Temperature profile of PIU-ABottom side
6.44 Surface temperature of the cooling plate (Bottom view)
6.45 Surface temperature of the cooling plate (Top view)
6.46 Air temperature contours in PIU region
6.47 Air flow vectors in BTS mechanics
6.48 Fan operating curve for 92 mm fan (60% speed, all fans running)
6.49 BTS configuration in thermal chamber
6.50 TC placement on PIU board
7.1 Test Setup Photograph of BTS with PIU-A
7.2 Location of Acceleration sensor in BTS (X-Axis)
7.3 Location of Acceleration sensor in BTS (Y-Axis)
7.4 Location of Acceleration sensor in BTS
7.5 Graph Showing the Peak in BTS X-axis, Sinusoidal Vibration
7.6 Graph Showing the Peak in BTS Y-axis, Sinusoidal Vibration 215
7.7 Graph Showing the Peak in BTS Z-axis, Sinusoidal Vibration 216
7.8 Graph Showing the Peak in BTS X-axis, Random Vibration 218
7.9 Graph Showing the Peak in BTS Y-axis, Random Vibration 219
7.10 Graph Showing the Peak in BTS Z-axis, Random Vibration 220
7.11 Graph Showing the Peak in BTS X-axis, Shock Vibration 222
7.12 Graph Showing the Peak in BTS Y-axis, Shock Vibration 223
7.13 Graph Showing the Peak in BTS Z-axis, Shock Vibration 224
<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Challenges to Optimize Junction to Ambient Thermal Resistance</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Limitations and Capabilities for Compressor-based Cooling</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Lab Test Equipment and software utilities</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Environmental chamber specification</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Accelerometer specification</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Sinusoidal vibration severity</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Random vibration severity</td>
<td>65</td>
</tr>
<tr>
<td>3.6</td>
<td>Shock severity</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Acoustic measurement equipment</td>
<td>71</td>
</tr>
<tr>
<td>3.8</td>
<td>Microphone Location as per standard</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Component details in SB and PIU</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Component details in BB</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Component details in PB</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Flow Vs Static Pressure values</td>
<td>86</td>
</tr>
<tr>
<td>5.1</td>
<td>Fan Operating pressure & flow</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Component temperature details in System Board & PIU</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Component temperature details in BB</td>
<td>96</td>
</tr>
<tr>
<td>5.4</td>
<td>Component temperature details in PB</td>
<td>96</td>
</tr>
<tr>
<td>5.5</td>
<td>Coupling details of SB & PIU</td>
<td>97</td>
</tr>
</tbody>
</table>
5.6 Coupling details of BB
5.7 Coupling details of PB
5.8 Fan Operating pressure & flow
5.9 Component temperature details in SB & PIU
5.10 Component temperature details in BB
5.11 Component temperature details in PB
5.12 Observations for further activities
5.13 Fan failure condition for SB & PIU
5.14 Fan failure condition for BB
5.15 Fan failure condition for PB
5.16 Flow Vs Static pressure for 92mm fan
5.17 Temperature results of SB & PIU
5.18 Temperature results of BB
5.19 Temperature results of PB
5.20 Fan failure condition for SB & PIU
5.21 Fan failure condition for BB
5.22 Fan failure condition for PB
5.23 Temperature results of SB & PIU
5.24 Temperature results of BB
5.25 Temperature results of PB
5.26 Fan failure condition for SB & PIU in 3*92mm fan assembly
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.27</td>
<td>Fan failure condition for BB in 3*92mm fan assembly</td>
<td>141</td>
</tr>
<tr>
<td>5.28</td>
<td>Fan failure condition for PB in 3*92mm fan assembly</td>
<td>141</td>
</tr>
<tr>
<td>5.29</td>
<td>Flow discharge Vs Static pressure points for 60mm fan</td>
<td>145</td>
</tr>
<tr>
<td>5.30</td>
<td>Flow discharge Vs Static pressure points for 92mm fan</td>
<td>145</td>
</tr>
<tr>
<td>5.31</td>
<td>Discharge Vs Static pressure points for 92mm fan at different speeds</td>
<td>146</td>
</tr>
<tr>
<td>5.32</td>
<td>Components temperature comparison in SB for 60 and 92mm fan</td>
<td>147</td>
</tr>
<tr>
<td>5.33</td>
<td>Components temperature comparison in BB for 60 and 92mm fan</td>
<td>148</td>
</tr>
<tr>
<td>5.34</td>
<td>Components temperature comparison in PB for 60 and 92mm fan</td>
<td>149</td>
</tr>
<tr>
<td>5.35</td>
<td>Operating point for 60mm fan</td>
<td>151</td>
</tr>
<tr>
<td>5.36</td>
<td>Operating point for 92mm fan</td>
<td>152</td>
</tr>
<tr>
<td>5.37</td>
<td>TC locations in FESB/PIU</td>
<td>155</td>
</tr>
<tr>
<td>5.38</td>
<td>TC locations in BB</td>
<td>156</td>
</tr>
<tr>
<td>5.39</td>
<td>TC locations in PB</td>
<td>157</td>
</tr>
<tr>
<td>5.40</td>
<td>Validated results for the components in the SB/PIU</td>
<td>159</td>
</tr>
<tr>
<td>5.41</td>
<td>Validated results for the components in the BB</td>
<td>160</td>
</tr>
<tr>
<td>5.42</td>
<td>Validated results for the components in the PB</td>
<td>160</td>
</tr>
<tr>
<td>5.43</td>
<td>Chassis case, inlet and Exit Air temperature</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>PIU-A layer stack up data</td>
<td>167</td>
</tr>
<tr>
<td>6.2</td>
<td>Power dissipation for BTS with PIU-A</td>
<td>167</td>
</tr>
<tr>
<td>6.3</td>
<td>Power dissipation and component details for PIU-A</td>
<td>168</td>
</tr>
<tr>
<td>6.4</td>
<td>Flow Vs Static Pressure values</td>
<td>169</td>
</tr>
</tbody>
</table>
6.5 Component temperature details in PIU-A without cooling plate
6.6 Heat towers on critical components
6.7 Fan Operating pressure & flow with all fans running
6.8 Temperature details in PIU-A with BTS, All fans running
6.9 Temperature details in PIU-A with BTS, Left fan fail
6.10 Equivalent thermal conductivity with thermal vias
6.11 Heat towers on critical components
6.12 Thermal pad details
6.13 Temperature details for Optimized case
6.14 Fan Operating pressure & flow with all fans running
6.15 Temperature details in PIU-A with BTS/C, All fans running
6.16 Measuring locations of Components in PIU-A
6.17 Validated results of PIU
7.1 Sinusoidal vibration severity
7.2 Random vibration severity
7.3 Shock severity
7.4 Visual Inspection Checklist after Vibration testing