List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Heading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>A few characteristics of the activated carbon</td>
<td>23</td>
</tr>
<tr>
<td>2.2.</td>
<td>Some characteristic properties of silica gel</td>
<td>25</td>
</tr>
<tr>
<td>3.1.</td>
<td>Plants selected for preparing biosorbents</td>
<td>45</td>
</tr>
<tr>
<td>3.2.</td>
<td>Composition of the Kala Jamun leaves</td>
<td>50</td>
</tr>
<tr>
<td>3.3.</td>
<td>Nutritional values of the Kala Jamun fruits per 100 g (3.5 oz)</td>
<td>50</td>
</tr>
<tr>
<td>4.1.</td>
<td>pH of 5 % slurry of the biosorbents with distilled water</td>
<td>72</td>
</tr>
<tr>
<td>4.2.</td>
<td>Specific surface areas of the biosorbents</td>
<td>77</td>
</tr>
<tr>
<td>4.3.</td>
<td>Cation exchange capacity of the biosorbents</td>
<td>78</td>
</tr>
<tr>
<td>4.4.</td>
<td>Anion exchange capacity of the biosorbents</td>
<td>78</td>
</tr>
<tr>
<td>4.5.</td>
<td>Functional group assignments in FTIR-spectra of KSP</td>
<td>81</td>
</tr>
<tr>
<td>4.6.</td>
<td>Functional group assignments of IR bands in KBP</td>
<td>82</td>
</tr>
<tr>
<td>4.7.</td>
<td>Functional group assignment of prominent IR bands in ArBP</td>
<td>85</td>
</tr>
<tr>
<td>4.8.</td>
<td>Functional group assignment of the IR bands in AmBP</td>
<td>88</td>
</tr>
<tr>
<td>4.9.</td>
<td>Kinetic parameters of Cr(VI) adsorption on KSP (3 g/L) at 303 K and pH as prepared.</td>
<td>96</td>
</tr>
<tr>
<td>4.10.</td>
<td>Values of Elovich constants, α and β, for adsorption of Cr (VI) on KSP at 300 K, pH as prepared.</td>
<td>97</td>
</tr>
<tr>
<td>4.11.</td>
<td>Langmuir and Freundlich coefficients for sorption of Cr (VI) on KSP at 303 K.</td>
<td>103</td>
</tr>
<tr>
<td>4.12.</td>
<td>Thermodynamic parameters for Cr (VI) adsorption on KSP at 293, 298, 308, 313 K</td>
<td>106</td>
</tr>
<tr>
<td>4.13.</td>
<td>Kinetic parameters of Cr (VI) adsorption on KBP (4 g/L) at 303 K</td>
<td>114</td>
</tr>
<tr>
<td>4.14.</td>
<td>Elovich coefficients, α and β, for adsorption of Cr (VI) on KBP at 300 K</td>
<td>115</td>
</tr>
<tr>
<td>4.15.</td>
<td>Langmuir and Freundlich constants for Cr (VI) on KBP at 303 K.</td>
<td>121</td>
</tr>
<tr>
<td>4.16.</td>
<td>Thermodynamic parameters of Cr(VI) adsorption on KBP for at 293, 298, 308, 313 K.</td>
<td>123</td>
</tr>
<tr>
<td>4.17.</td>
<td>Kinetic parameters of Cr(VI) adsorption on ArBP (3 g/L) at 303</td>
<td></td>
</tr>
</tbody>
</table>
4.18. Elovich coefficients, α and β, for adsorption of Cr (VI) on ArBP at 300 K, pH as prepared.

4.19. Langmuir and Freundlich parameters for sorption of Cr (VI) on ArBP at 303 K.

4.20. Thermodynamic parameters for Cr (VI) adsorption on ArBP.

4.21. Kinetic parameters of Cr(VI) adsorption on AmBP.

4.22. Elovich coefficients, α and β, for adsorption of Cr (VI) on AmBP at 300 K.

4.23. Langmuir and Freundlich adsorption coefficients for adsorption of Cr (VI) on AmBP at 303 K.

4.24. Thermodynamic parameters for Cr (VI) adsorption on AmBP.

4.25. Cr(VI) adsorption in the presence and absence of Cd(II).

4.26. Adsorption of Cr(VI) on KSP in the absence and in the presence of Cu(II).

4.27. Comparison of percentage adsorption of Cr (VI) in the absence and in the presence of Pb(II).

4.28. Comparison of monolayer adsorption capacities of Cr(VI) on KSP in the absence and in the presence of Cd(II), Cu(II) and Pb(II) at 303 K. [Cr(VI), Cd(II), Cu(II) and Pb(II) concentrations 40 mg/L each, mixed in equal volumes]

4.29. Comparison of Cr(VI) adsorption on KBP in the absence and in the presence of Cd(II).

4.30. Cr(VI) adsorption on KBP from a binary mixture with Cu(II) at 303 K (pH as prepared, agitation time 60 min).

4.31. Comparison of Cr(VI) adsorption on KBP at 303 K from unitary and binary systems (with Pb(II)).

4.32. Comparison of monolayer adsorption capacities of Cr(VI) on KBP in the absence and in the presence of Cd(II), Cu(II) and Pb(II) at 303 K. [Cr(VI), Cd(II), Cu(II) and Pb(II) concentrations 40 mg/L each, mixed in equal volumes]

4.33. Comparison of percentage adsorption of Cr (VI) on ArBP in the
absence and in the presence of Cd(II) at 303 K.

4.34. Comparison of Cr(VI) adsorption on ArBP in the absence and in the presence of Cu(II) at 303 K

4.35. Comparison of the percentage adsorption of Cr (VI) in the absence and in the presence of Pb(II) at 303 K

4.36. Comparison of the monolayer adsorption capacities of Cr(VI) on ArBP in the absence and in the presence of Cd(II), Cu(II) and Pb(II) at 303 K. [Cr(VI), Cd(II), Cu(II) and Pb(II) concentrations 40 mg/L each, mixed in equal volumes]

4.37. Comparison of the percentage adsorption of Cr (VI) from a unitary solution and a binary solution of Cr (VI) and Cd(II) on AmBP at 303 K

4.38. Comparison of percentage adsorption of Cr(VI) on AmBP from unitary system and the binary system of Cr (VI) and Cu(II) at 303 K.

4.39. Comparison of Cr(VI) adsorption on AmBP at 303 K from unitary and binary systems (with Pb(II)).

4.40. Comparison of monolayer adsorption capacities of Cr(VI) on AmBP in the absence and in the presence of Cd(II), Cu(II) and Pb(II) at 303 K. [Cr(VI), Cd(II), Cu(II) and Pb(II) concentrations 40 mg/L each, mixed in equal volumes]

5.1. Experimental conditions for studying effects of bed depth on Cr(VI) adsorption

5.2. Breakthrough volumes and times at 90% and 50% at different bed depths. [BV Breakthrough Volume, AdCap Adsorption Capacity]

5.3. Experimental conditions for the study of the effects of flow rate

5.4. Breakthrough volumes and times at 90 % and 50 % at different flow rates

5.5. Experimental conditions for column adsorption of Cr(VI) at different concentrations

5.6. Breakthrough volumes and times at 90% and 50% at different Cr(VI) concentration.
5.7. The BDST model parameters for column sorption of Cr(VI) on KSP 219
5.8. The BDST model parameters for column sorption of Cr(VI) on KBP 220
5.9. The BDST model parameters for column sorption of Cr(VI) on ArBP 221
5.10. The BDST model parameters for column sorption of Cr(VI) on AmBP 222
5.11. The flow rates selected for desorption 224
5.12. Time and volume of 0.1 N NaOH required for complete desorption of Cr(VI) ions from Cr(VI)-adsorbed columns.

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.</td>
<td>FTIR Spectra of KSP before adsorption of Cr (VI) (top) and after adsorption of Cr(VI) (bottom).</td>
</tr>
<tr>
<td>4.2.</td>
<td>FTIR Spectra of KBP before adsorption of Cr(VI) (top) and after adsorption of Cr(VI) (bottom)</td>
</tr>
<tr>
<td>4.3.</td>
<td>FTIR Spectra of ArBP before adsorption of Cr(VI) (top) and after adsorption of Cr(VI) (bottom)</td>
</tr>
<tr>
<td>4.4.</td>
<td>FTIR Spectra of AmBP before adsorption of Cr(VI) (top) and after adsorption of Cr(VI) (bottom)</td>
</tr>
<tr>
<td>4.5.</td>
<td>Variation of Cr(VI) adsorption on KSP with pH at 303 K (KSP 3 g/L, Cr(VI) 40 mg/L, interaction time 180 min)</td>
</tr>
<tr>
<td>4.6.</td>
<td>Variation of Cr(VI) adsorption on KSP with contact time at 303 K (KSP 3 g/L, pH 5.4, Temperature 303 K)</td>
</tr>
<tr>
<td>4.7.</td>
<td>Lagergren pseudo first-order plots for Cr (VI) adsorption on KSP at 303 K</td>
</tr>
<tr>
<td>4.8.</td>
<td>Second order plots for Cr (VI) adsorption on KSP at 303 K, pH as prepared.</td>
</tr>
<tr>
<td>4.9.</td>
<td>Intra particle diffusion plots for Cr(VI) adsorption on KSP at 303 K</td>
</tr>
</tbody>
</table>
4.10. Elovich plots for Cr (VI) adsorption on KSP at 303 K and at pH as prepared.

4.11. Variation of Cr (VI) sorption with different amounts of KSP at 303 K (pH as prepared, time 180 min).

4.12. Effects of Cr (VI) concentration on its adsorption by KSP (3.0 g/L) at 303 K for contact time of 180 min.

4.13. Langmuir isotherm for Cr(VI) adsorption on KSP at 303 K (pH as prepared, interaction time 180 min).

4.14. Freundlich isotherms for adsorption of Cr(VI) on KSP at 303 K (pH as prepared time 180 min).

4.15. Effects of temperature of Cr(VI) adsorption on KSP at 303 K (KSP 3 g/L, contact time 180 min, pH as prepared).

4.16. van’t Hoff plots for Cr (VI) adsorption on KSP (pH as prepared, interaction time 180 min, KSP 3 g/L, Cr(VI) 10 – 50 mg/L).

4.17. Effects of pH on Cr(VI) adsorption on KBP at 303 K (KBP 4 g/L, Cr(VI) 40 mg/L, interaction time 60 min).

4.18. Effects of contact time on Cr (VI) adsorption on KBP at 303 K (KBP 4g/L, pH as prepared).

4.19. Lagergren pseudo first-order plots for Cr (VI) adsorption on KBP at 303 K.

4.20. Second order kinetic plots for Cr (VI) on KBP at 303 K.

4.21. Intra-particle diffusion plots of Cr(VI) on KBP at 303 K.

4.22. Elovich plots for Cr (VI) adsorption on KBP at 303 K.

4.23. Variation of Cr (VI) sorption with different amounts of KBP at 303 K (pH as prepared, time 60 min).

4.24. Effect of Cr (VI) concentrations on its adsorption by KBP at 303 K (KBP, 1.0 – 6.0 g/L, contact time, 60 min).

4.25. Langmuir plots for Cr(VI) adsorption on KBP at 303 K (pH as prepared, interaction time 60 min).

4.26. Freundlich isotherms of Cr(VI) adsorption on KBP at 303 K (pH as prepared time 60 min).
4.27. Effects of temperature on adsorption of Cr(VI) at different concentrations on KBP (4 g/L) for contact time of 60 min, pH as prepared.

4.28. van’t Hoff plots for Cr (VI)\(^{-}\) adsorption on KBP (pH as prepared, interaction time 60 min, KBP 4 g/L).

4.29. Effects of pH on Cr(VI) adsorption by ArBP at 303 K (ArBP 3 g/L, Cr(VI) 40 mg/L, interaction time 120 min)

4.30. Effect of contact time for Cr (VI) adsorption on ArBP at 303 K (ArBP 3 g/L, pH as prepared)

4.31. Lagergren pseudo first-order plots for Cr (VI) adsorption on ArBP at 303 K

4.32. Second order plots for Cr (VI) adsorption on ArBP at 303 K

4.33. Intra particle diffusion plots of Cr (VI) adsorption on ArBP at 303 K

4.34. Elovich plots of Cr (VI) adsorption on ArBP at 303 K and at pH as prepared.

4.35. Variation of Cr(VI) adsorption with different amounts of ArBP at 303 K (pH as prepared, time 120 min).

4.36. Effects of Cr (VI) concentrations on its adsorption by ArBP at 303 K (ArBP, 1.0 – 6.0 g/L, contact time, 120 min).

4.37. Langmuir isotherms for Cr(VI) adsorption on ArBP at 303 K (pH as prepared, interaction time 120 min)

4.38. Freundlich isotherms for Cr (VI) adsorption on ArBP at 303 K (pH as prepared, time 120 min)

4.39. Effects of temperature of Cr (VI) adsorption on ArBP (3 g/L), contact time 120 min, pH as prepared.

4.40. van’t Hoff plots for Cr (VI)\(^{-}\) adsorption on ArBP (pH as prepared, interaction time 120 min, ArBP 3 g/L).

4.41. Effects of pH on Cr(VI) adsorption on AmBP at 303 K (AmBP 2 g/L, Cr(VI) 40 mg/L, interaction time 90 min)

4.42. Effects of contact time for Cr (VI) adsorption on AmBP at 303 K (AmBP 2.0 g/L, pH as prepared)
4.43. Lagergren pseudo first-order plots for Cr (VI) adsorption on AmBP at 303 K

4.44. Second order kinetic plots for Cr (VI) adsorption on AmBP at 303 K

4.45. Plots of intra particle diffusion kinetics of Cr(VI) sorption on AmBP at 303 K

4.46. Elovich plots for Cr(VI) adsorption on AmBP at 303 K

4.47. Cr (VI) adsorption on increasing amounts of AmBP at 303 K

4.48. Effects of Cr(VI) concentrations on its adsorption on AmBP at 303 K

4.49. Langmuir isotherms for Cr(VI) adsorption on AmBP at 303 K

4.50. Freundlich isotherms for Cr(VI) adsorption on AmBP at 303 K

4.51. Effects of temperature on Cr(VI) adsorption on AmBP (2 g/L) with a contact time of 90 min.

4.52. van’t Hoff plots for Cr(VI) adsorption on AmBP

4.53. Variation in Cr (VI) adsorption on KSP at 303 K from a binary mixture with Cd (II) in equal concentrations (Agitation time 180 min, pH not adjusted).

4.54. Variation Cr (VI) adsorption on KSP at 303 K from a binary mixture with Cu(II) (equal concentrations) (pH as prepared, agitation time 180 min)

4.55. Variation in Cr(VI) adsorption in the presence of Pb(II) on KSP at 303 K (pH as prepared, agitation time 180 min).

4.56. Langmuir isotherms for adsorption of Cr(VI) on KSP from a binary mixture of Cr(VI) and Cd(II) in equal concentrations at 303 K (pH as prepared, agitation time 180 min)

4.57. Langmuir isotherms for adsorption of Cr(VI) on KSP from a binary mixture of Cr(VI) and Cu(II) in equal concentrations at 303 K (pH as prepared, agitation time 180 min)

4.58. Langmuir isotherms for adsorption of Cr(VI) on KSP from a binary mixture of Cr(VI) and Pb(II) in equal concentrations at 303 K (pH as prepared, agitation time 180 min)
4.59. Variation in Langmuir monolayer adsorption capacity (q_m, mg/g) of Cr(VI) on KSP at 303 K on addition of Cd(II), Cu(II) and Pb(II) [Cr(VI), Cd(II), Cu(II) and Pb(II) concentrations 40 mg/L each, mixed in equal volumes] 167

4.60. Variation in Cr(VI) adsorption on KBP from binary mixtures of Cr(VI) and Cd(II) at 303 K (pH as prepared, agitation time 60 min). 169

4.61. Cr(VI) adsorption on KBP from a binary mixture with Cu(II) at 303 K (pH as prepared, agitation time 60 min). 171

4.62. Cr(VI) adsorption on KBP from a binary mixture with Pb(II) at 303 K (pH as prepared, agitation time 60 min). 172

4.63. Langmuir isotherms for Cr(VI) adsorption on KBP from binary mixtures with Cd(II) at 303 K (pH as prepared, agitation time 60 min). 175

4.64. Langmuir isotherms for Cr(VI) adsorption on KBP from binary mixtures with Cu(II) at 303 K (pH as prepared, agitation time 60 min). 175

4.65. Langmuir isotherms for Cr(VI) adsorption on KBP from binary mixtures with Pb(II) at 303 K (pH as prepared, agitation time 60 min). 176

4.66. Variation in Cr(VI) adsorption on ArBP from binary mixtures of Cr(VI) and Cd(II) at 303 K (pH as prepared, agitation time 120 min). 178

4.67. Cr(VI) adsorption on ArBP from a binary mixture with Cu(II) at 303 K (pH as prepared, agitation time 120 min). 180

4.68. Cr(VI) adsorption on ArBP from a binary mixture with Pb(II) at 303 K (pH as prepared, agitation time 120 min). 182

4.69. Langmuir isotherms for Cr(VI) adsorption on ArBP from binary mixtures with Cd(II) at 303 K (pH as prepared, agitation time 120 min). 185

4.70. Langmuir isotherms for Cr(VI) adsorption on ArBP from binary mixtures with Cu(II) at 303 K (pH as prepared, agitation time 120 min). 186
4.71. Langmuir isotherms for Cr(VI) adsorption on ArBP from binary mixtures with Pb(II) at 303 K (pH as prepared, agitation time 120 min).

4.72. Variation in Cr(VI) adsorption on AmBP from binary mixtures of Cr(VI) and Cd(II) at 303 K (pH as prepared, agitation time 90 min).

4.73. Cr(VI) adsorption on AmBP from a binary mixture with Cu(II) at 303 K (pH as prepared, agitation time 90 min).

4.74. Cr(VI) adsorption on AmBP from a binary mixture with Pb(II) at 303 K (pH as prepared, agitation time 90 min).

4.75. Langmuir isotherms for Cr(VI) adsorption on AmBP from binary mixtures with Cd(II) at 303 K (pH as prepared, agitation time 90 min).

4.76. Langmuir isotherms for Cr(VI) adsorption on AmBP from binary mixtures with Cu(II) at 303 K (pH as prepared, agitation time 90 min).

4.77. Langmuir isotherms for Cr(VI) adsorption on AmBP from binary mixtures with Pb(II) at 303 K (pH as prepared, agitation time 90 min).

5.1. Effects of bed depth on Cr(VI) adsorption on KSP at 303 K (flow rate 2.3 mL/min, feed concentration 50 mg/L)

5.2. Effects of bed depth on Cr(VI) adsorption on KBP at 303 K (flow rate 2.6 mL/min, feed concentration 50 mg/L)

5.3. Effects of bed depth on Cr(VI) adsorption on ArBP at 303 K (flow rate 5.4 mL/min, feed concentration 50 mg/L)

5.4. Effects of bed depth of Cr(VI) on adsorption of AmBP at 303 K (flow rate 10.6 mL/min, feed concentration 50 mg/L)

5.5. Cr(VI) adsorption capacities of the four biosorbents at 50% and 90% breakthrough for bed depths of 1.4, 2.0 and 2.6 cm respectively in each case.

5.6. Effects of bed depth 1.4 cm, feed concentration 50 mg/L)

Effects of flow rate on Cr(VI) adsorption on KSP at 303 K (bed depth 1.4 cm, feed concentration 50 mg/L)
5.7. Effects of flow rate on Cr(VI) adsorption on KBP at 303 K (bed depth 1.4 cm, feed concentration 50 mg/L)

5.8. Effects of flow rate of Cr(VI) on adsorption of ArBP at 303 K (bed depth 1.4 cm, feed concentration 50 mg/L)

5.9. Effects of flow rate of Cr(VI) on adsorption of AmBP at 303 K (bed depth 1.4 cm, feed concentration 50 mg/L)

5.10. Effects of Cr(VI) concentration on adsorption in a KSP column at 303 K (bed depth 1.4 cm, flow rate 2.3 mL/min)

5.11. Effects of concentration on Cr(VI) adsorption on a KBP column at 303 K (bed depth 1.4 cm, flow rate 2.6 mL/min)

5.12. Effects of concentration on Cr(VI) adsorption on a ArBP column at 303 K (bed depth 1.4 cm, flow rate 5.4 mL/min)

5.13. Effects of concentration on Cr(VI) adsorption on a AmBP column at 303 K (bed depth 1.4 cm, flow rate 10.6 mL/min)

5.14. Iso-removal lines for Cr(VI) adsorption on KSP at 303 K (flow rate 2.3 mL/min, feed concentration 50 mg/L).

5.15. Iso-removal lines for Cr(VI) adsorption on KBP at 303 K (flow rate 2.6 mL/min, feed concentration 50 mg/L).

5.16. Iso-removal lines for Cr(VI) adsorption on ArBP at 303 K (flow rate 5.4 mL/min, feed concentration 50 mg/L).

5.17. Iso-removal lines for Cr(VI) adsorption on AmBP at 303 K (flow rate 10.6 mL/min, feed concentration 50 mg/L).

5.18. Desorption of Cr(VI) from Cr(VI)-loaded KSP column at 303 K with aqueous 0.1 N NaOH (bed depth 1.4 cm, flow rate 1.8 mL/min).

5.19. Desorption of Cr(VI) from Cr(VI)-loaded KBP column at 303 K with aqueous 0.1 N NaOH (bed depth 1.4 cm, flow rate 2.1 mL/min).

5.20. Desorption of Cr(VI) from Cr(VI)-loaded ArBP column at 303 K with aqueous 0.1 N NaOH (bed depth 1.4 cm, flow rate 4.9 mL/min).
5.21. Desorption of Cr(VI) from Cr(VI)-loaded AmBP column at 303 K with aqueous 0.1 N NaOH (bed depth 1.4 cm, flow rate 10.2 mL/min).

List of Plates

<table>
<thead>
<tr>
<th>Plate</th>
<th>Heading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>Kala Jamun fruits and leaves</td>
<td>46</td>
</tr>
<tr>
<td>3.2.</td>
<td>Kala Jamun seeds</td>
<td>47</td>
</tr>
<tr>
<td>3.3.</td>
<td>Jamun’s bark</td>
<td>47</td>
</tr>
<tr>
<td>3.4.</td>
<td>The Arjuna’s fruits and leaves</td>
<td>53</td>
</tr>
<tr>
<td>3.5.</td>
<td>The Arjuna’s Bark</td>
<td>53</td>
</tr>
<tr>
<td>3.6.</td>
<td>Amla’s fruits and leaves</td>
<td>57</td>
</tr>
<tr>
<td>3.7.</td>
<td>Amla’s bark</td>
<td>58</td>
</tr>
<tr>
<td>3.8.</td>
<td>Kala Jamun seed powder</td>
<td>62</td>
</tr>
<tr>
<td>3.9.</td>
<td>Arjun bark powder</td>
<td>62</td>
</tr>
<tr>
<td>3.10.</td>
<td>Amla bark powder</td>
<td>63</td>
</tr>
<tr>
<td>3.11.</td>
<td>Kala Jamun bark powder</td>
<td>63</td>
</tr>
<tr>
<td>4.1.</td>
<td>SEM images of KSP before adsorption (left) and after adsorption (right)</td>
<td>73</td>
</tr>
<tr>
<td>4.2.</td>
<td>SEM images of KBP before adsorption (left) and after adsorption (right)</td>
<td>74</td>
</tr>
<tr>
<td>4.3.</td>
<td>SEM of ArBP before (left) and after adsorption (right) of Cr(VI)</td>
<td>75</td>
</tr>
<tr>
<td>4.4.</td>
<td>SEM images of AmBP before (left) and after adsorption (right) of Cr(VI)</td>
<td>76</td>
</tr>
</tbody>
</table>