LIST OF SYMBOLS

\(I_D \) - drain current

\(I_0 \) - intrinsic current

\(L_{eq} \) - equivalent length

\(W \) - transistor width

\(L \) - transistor length

\(V_p \) - pinchoff voltage

\(V_{TO} \) - threshold voltage in equilibrium

\(V_s \) - intrinsic source to bulk voltage

\(V_D \) - intrinsic drain to bulk voltage

\(n \) - slope factor slightly dependent on \(V_G \), greater than one and usually less than two. (derivative of gate voltage with respect to pinch-off voltage)

\(\Phi_t \) - thermal voltage

\(\Phi_f \) - fermi potential for holes

\(\mu_0 \) - low field mobility

\(C_{ox} \) - gate oxide capacitance/unit area

\(I_C \) - inversion coefficient

\(L \) - transistor length

\(N_{SUB} \) - channel doping

\(V_{FB} \) - flatband voltage

\(\Delta L \) - shrink in channel length

\(\lambda \) - channel length modulation parameter

\(V_{DS} \) - drain to source voltage

\(V_{DSAT} \) - drain saturation voltage
UCRIT - longitudinal critical field V/m

θ (THETA)- mobility reduction coefficient due to transversal field

γ (GAMMA)- body effect factor

σ (SIGMA) - DIBL coefficient

PHI - bulk Fermi potential

VMAX - saturation velocity

TOX - oxide thickness

gmdb - drain transconductance

gmgb - gate transconductance

gmsb - source transconductance

VTO - zero bias threshold voltage

XJ - Junction depth

LAMBDA - channel length modulation parameter
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 2.1</td>
<td>The Bulk referred MOSFET small signal model</td>
</tr>
<tr>
<td>Fig 2.2</td>
<td>Saturation Channel Conductance (g_{mb}) and its components at (V_{DS} = 3V) and (V_{SB} = 0V)</td>
</tr>
<tr>
<td>Fig 2.3</td>
<td>Saturation Source Transconductance (g_{msb}) and its components at (V_{DS} = 3V)</td>
</tr>
<tr>
<td>Fig 2.4</td>
<td>Saturation Gate Transconductance (g_{mgb}) and its components at (V_{DS} = 3V) and (V_{SB} = 0V)</td>
</tr>
<tr>
<td>Fig 2.5</td>
<td>Plots of Drain Conductance Sensitivities</td>
</tr>
<tr>
<td>Fig 2.6</td>
<td>Plots of Source Transconductance Sensitivities</td>
</tr>
<tr>
<td>Fig 2.7</td>
<td>Schematic Diagram of MOSFET Cascode Stage</td>
</tr>
<tr>
<td>Fig 2.8</td>
<td>Small Signal Equivalent of Cascode Stage</td>
</tr>
<tr>
<td>Fig 3.1</td>
<td>Plot of (a_{g(bulk)}) for different inversion levels</td>
</tr>
<tr>
<td>Fig 3.2</td>
<td>Plot of attainable DC gain for different channel lengths, obtained analytically and by simulation, with the inversion level (coefficient) or transition frequency as parameter.</td>
</tr>
<tr>
<td>Fig 3.3</td>
<td>Schematic Diagram of Common – Source Amplifier</td>
</tr>
<tr>
<td>Fig 4.1</td>
<td>Plots of open loop gain (\Delta A) of op amp as a function of the inversion Coefficient IC1 and IC6 of transistors M1 and M6 respectively, using minimum MOSFET channel length (L) in 1.2 (\mu) Technology</td>
</tr>
<tr>
<td>Fig 4.2</td>
<td>Constant open loop gain plots for op amp as a function of the Inversion Coefficients IC1 and IC6 of transistors M1 and M0 respectively, for different channel lengths (L) in 1.2 (\mu) Technology</td>
</tr>
</tbody>
</table>
Fig 4.3 Output resistance of 2-stage op amp as a function of the inversion levels of transistors in the output stage

Fig 4.4 Offset voltage due to V_T mismatch of the differential pair

Fig 4.5 Offset voltage due to V_T mismatch and finite output resistance of the current mirror pair

Fig 4.6 Schematic diagram of a classical 2-stage CMOS operational amplifier

Fig 5.1 Schematic diagram of a Simple Current Mirror (1:1)

Fig 5.2 Plot of current gain errors in Simple Current Mirror as a function of the transistor Inversion level

Fig 5.3 Schematic diagram of Wilson Current Mirror

Fig 5.4 Schematic diagram of Improved Wilson Current Mirror
LIST OF TABLES

Table 2.1 ACM MODEL Parameters for N Channel MOSFET
Table 2.2 ACM MODEL Parameters for P Channel MOSFET
Table 2.3 Node Voltages at Operating Point (Cascode Stage)
Table 3.1 First order MOSFET equations
Table 3.2 Changes in Gain and Intrinsic Frequency of Common Source Amplifier due to changes in model and device parameters
Table 4.1 Common Performance Parameters of Operational Amplifiers (OP AMPS)
Table 4.2 OP AMP Circuit Design Parameters for Numerical Example
Table 4.3 OP AMP Performance parameters obtained analytically using Advanced Compact MOSFET (ACM) Model and SPICE Simulation for 1.2 μ technology
Table 5.1 Simulation results for the Wilson Current Mirror
Table 6.1 Simulated performance of the Common Source Amplifier in 1.2 μ technology using SPICE BSIM parameters
Table 6.2 Simulated performance of the Common Source Amplifier with IC=400 in 0.35 μ technology using SPICE BSIM parameters
Table 6.3 Simulated performance of the Common Source Amplifier with IC=25 in 0.35 μ technology using SPICE BSIM parameters