LIST OF TABLES

Table 3.1: Details of the sampling carried out for the present study

Table 4.1.a: Macrofaunal biomass (mg.m\(^{-2}\)) during March 2003

Table 4.1.b: Biotic parameters and diversity indices studied in different stations during March 2003

Table: 4.1.c: Spearman rank correlation for the different environmental parameters studied during March 2003

Table: 4.1.d. I: Eigene values for the ten environmental variables studied in the CIOB during March 2003

Table: 4.1.d. II: Factor loadings of the environmental variables studied during March 2003

Table 4.2.a: Macrofaunal biomass (mg.m\(^{-2}\)) during April 2005

Table 4.2.b: Biotic parameters & diversity indices studied in different stations during April 2005

Table 4.2.c: Spearman rank correlation for environmental parameters during April 2005

Table 4.2.d.I: Eigene values for the ten environmental variables studied in the CIOB during April 2005

Table 4.2.d.II: Factor loadings of the environmental variables studied during April 2005

Table 4.4.a: Temporal variation of macrofaunal density (no.m\(^{-2}\)) and biomass (mg.m\(^{2}\)).

Table 4.4.b: Percentage increase/decrease in the biotic and sediment parameters during April 2005 compared to March 2003

Table 4.4.c: Temporal variation of other benthic parameters and diversity indices

Table 4.5.a: Structural analysis of macrofaunal density using the two meshes

Table 4.5.b: Diversity indices for the two mesh sieves

Table 4.5.c: Variation in vertical distribution of macrofauna using the two meshes
LIST OF FIGURES

Fig. 1.1: Schematic diagram showing the cross section of the ocean
Fig. 1.2: Schematic diagram showing the major features of the ocean floor
Fig. 3.1: Details of the study area
Fig. 4.1.a: Composition (%) of polychaetes during March 2003
Fig. 4.1.b: Composition (%) of nematodes during March 2003
Fig. 4.1.c: Composition (%) of other dominant macrofauna during March 2003
Fig. 4.1.d: Station wise density and composition (no.m$^{-2}$) of macrofauna during March 2003
Fig. 4.1.e: Variation of sediment organic carbon (%) in the study area during March 2003
Fig. 4.1.f: Variation of sediment protein and carbohydrate among stations during March 2003
Fig. 4.1.g: Variation in sediment texture among stations during March 2003
Fig. 4.1.h: Similarity (%) between stations based on macrofaunal density during March 2003
Fig. 4.1.i: Similarity (%) between stations based on macrofaunal biomass during March 2003
Fig. 4.1.j: Cluster analysis of macrofaunal density (March 2003)
Fig. 4.1.k: Cluster analysis of macrofaunal biomass (March 2003)
Fig. 4.1.l: Relationship between sediment org. C and macrofauna during March 2003
Fig. 4.1.m: Relationship between macrofauna and sediment protein during March 2003
Fig. 4.1.n: Relationship between macrofauna and water chl-α during March 2003
Fig. 4.1.o: Relationship between latitude and macrofaunal density in March 2003
Fig. 4.1.p: Relationship between latitude and sediment organic carbon in March 2003
Fig. 4.1.q: Relationship between latitude and sediment protein in March 2003
Fig. 4.1.r: Relationship between latitude and water chl-α in March 2003
Fig. 4.1.s: Relationship between water chl-a and sediment org. C in March 2003

Fig. 4.1.t: Factor analysis of sediment and biological parameters (March 2003)

Fig. 4.1.u: Vertical distribution of macrofaunal density during March 2003

Fig. 4.1.v: Vertical distribution of macrofaunal density, biomass, sediment org. C and LOM during March 2003.

Fig. 4.1.w: Vertical distribution of macrofaunal biomass during March 2003

Fig. 4.2.a: Composition (%) of nematodes during April 2005

Fig. 4.2.b: Composition (%) of polychaetes during April 2005

Fig. 4.2.c: Composition (%) of tanaids during April 2005

Fig. 4.2.d: Composition (%) of isopods, harpacticoids, bivalves during April 2005

Fig. 4.2.e: Composition of macrofauna (no.m$^{-2}$) at different stations during April 2005

Fig. 4.2.f: Variation of sediment organic carbon (%) in the study area during April 2005

Fig. 4.2.g: Variation of sediment protein and carbohydrate among different stations during April 2005

Fig. 4.2.h: Variation in sediment texture among stations during April 2005

Fig. 4.2.i: Similarity (%) between stations based on macrofaunal density during April 2005

Fig. 4.2.j: Similarity (%) between stations based on macrofaunal biomass during April 2005

Fig. 4.2.k: Cluster analysis of macrofaunal density (April 2005)

Fig. 4.2.l: Cluster analysis of macrofaunal biomass (April 2005)

Fig. 4.2.m: Relationship between sediment org. C and macrofauna during April 2005

Fig. 4.2.n: Relationship between sediment protein and macrofauna during April 2005

Fig. 4.2.o: Relationship between water chl-a and macrofauna during April 2005

Fig. 4.2.p: Relationship between latitude and macrofaunal density during April 2005
Fig. 4.2.q: Relationship between latitude and sediment organic carbon during April 2005
Fig. 4.2.r: Relationship between latitude and water chl-α during April 2005
Fig. 4.2.s: Relationship between water chl-α and sediment org. C during April 2005
Fig. 4.2.t: Factor analysis of sediment and biological parameters (April 2005)
Fig. 4.2.u: Vertical distribution of macrofaunal density during April 2005
Fig. 4.2.v: Vertical distribution of macrofaunal density, biomass, sediment org. C and LOM during April 2005
Fig. 4.2.w: Vertical distribution of macrofaunal biomass during April 2005
Fig. 4.3.a: Distribution of polychaete species in the Central Indian Ocean
Fig. 4.3.b: Distribution of nematode species in the Central Indian Ocean
Fig. 4.3.c: Distribution of harpacticoid species in the Central Indian Ocean
Fig. 4.3.d: Distribution of tanaid species in the Central Indian Ocean
Fig. 4.3.e: Distribution of isopod and bivalve species in the Central Indian Ocean
Fig. 4.3.f: Distribution of sediment organic carbon in the Central Indian Ocean
Fig. 4.3.g: Distribution of macrofaunal density in the Central Indian Ocean
Fig. 4.3.h: Distribution of macrofaunal biomass in the Central Indian Ocean
Fig. 4.3.i: Distribution of surface water chl-α in the Central Indian Ocean
Fig. 4.3.j: Surface water chl-α and estimated values of chl-α that could be available at the bottom for benthic organisms
Fig. 4.4.a: Temporal changes in the vertical distribution of macrofauna (no.m⁻²) in the CIOB (I) March 2003, (II) April 2005
Fig. 4.4.b: Temporal changes in the vertical distribution of macrobenthic biomass in the CIOB (I) March 2003, (II) April 2005
Fig. 4.4.c: Temporal variation in vertical distribution of sediment protein and carbohydrate in the CIOB (I) March 2003, (II) April 2005
Fig. 4.4.d: Temporal variation in macrofauna
Fig. 4.4.e: Temporal variation in sediment organic carbon
Fig. 4.4.f: Temporal variation in sediment protein
Fig. 4.4.g: Temporal variation in sediment carbohydrate
Fig. 4.4.h: Temporal variation in surface water chl-a
Fig. 4.5.a: Variation in number of individuals and species for the two mesh sizes
Fig. 4.5.b: Variation in percentage of individuals and species for the two mesh sizes
Fig. 4.5.c: Sieve size influence on number of species
Fig. 4.5.d: Spatial variation of macrofaunal density and effect of mesh size
Fig. 4.5.e: Hurlbert's rarefaction curve for two mesh sizes
\[E(S_n) = \text{expected number of species}; \ n = \text{observed number of species} \]
Fig. 4.5.f: Macrofaunal biomass variation in the two meshes
Fig. 4.5.g: Difference in macrobenthic biomass due to mesh sizes
Fig. 4.5.h: Difference in the macrofaunal density due to two mesh size
Fig. 4.5.i: Vertical variation of macrofaunal biomass in the two meshes
Fig. 5.1: Composition (%) of polychaetes and nematodes based on feeding pattern during March 2003
Fig. 5.2: Composition (%) of polychaetes and nematodes based on feeding pattern during April 2005
LIST OF PLATES

Plate 3.1: Sample collection and processing during the present study
Plate 4.3.1: Representatives of polychaetes recorded in the present study
Plate 4.3.2: Representatives of nematodes recorded in the present study
Plate 4.3.3: Representatives of tanaids recorded in the present study
Plate 4.3.4: Representatives of isopods and bivalves recorded in the present study
Plate 4.3.5: Representatives of harpacticoids recorded in the present study
Plate 4.3.6: Tantulocaridae infested on *Metahuntmannia* sp. and *Leptognathia* sp.