LIST OF FIGURES

1.1 IEEE Standards (a) Wireless local area network (WLAN) (b) Worldwide interoperability microwave access (WiMAX). 6

2.1 System Model of MIMO-OFDM \((N_{T_s} \times N_{R_s})\) system. 12
2.2 Transmitted QPSK symbol of MIMO-OFDM \((N_{T_s} \times N_{R_s})\) system. 13
2.3 Rayleigh fading channel signal of MIMO-OFDM \((N_{T_s} \times N_{R_s})\) system. 14
2.4 Received symbol of MIMO-OFDM \((N_{T_s} \times N_{R_s})\) system. 15
2.5 Input power versus output power characteristic of PA. 17
2.6 Comparison of number of subcarriers for MIMO-OFDM \((N_{T_s} \times N_{R_s})\) system. 18
2.7 Comparison of modulation scheme with PAPR reduction for MIMO-OFDM \((N_{T_s} \times N_{R_s})\) system. 19
2.8 Block diagram for Adaptive equalization. 20

3.1 System model of \((N_{T_s} \times N_{R_s})\) MIMO-OFDM system proposed by Xiaodong (2012). 27
3.2 Conventional PAPR Reduction Taxonomy. 28
3.3 Constellation distribution of clipping PAPR reduction methods. . 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Block diagram of peak cancellation in OFDM transmitter.</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Tone injection technique for 16-QAM constellation.</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Constellation distribution of ACE PAPR reduction methods.</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>QPSK Constellation distribution of AGP PAPR reduction methods.</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>Block diagram of partial transmit sequence (PTS) technique for MIMO-OFDM transmitter.</td>
<td>38</td>
</tr>
<tr>
<td>3.9</td>
<td>Block diagram of selective mapping (SLM) technique for MIMO-OFDM transmitter.</td>
<td>40</td>
</tr>
<tr>
<td>3.10</td>
<td>Comparison of CCDF for different PAPR reduction techniques.</td>
<td>41</td>
</tr>
<tr>
<td>3.11</td>
<td>Block diagram of proposed active partial sequence (APS) PAPR reduction method.</td>
<td>44</td>
</tr>
<tr>
<td>3.12</td>
<td>Block diagram of proposed approximate transmit sequence (ATS) PAPR reduction method.</td>
<td>47</td>
</tr>
<tr>
<td>3.13</td>
<td>Peak-to-average ratio performance (a) WLAN (b) WiMAX of proposed (APS) method for (N_{Tx} \times N_{Rx}) MIMO-OFDM system.</td>
<td>50</td>
</tr>
<tr>
<td>3.14</td>
<td>Peak-to-average ratio performance (a) WLAN (b) WiMAX of proposed (ATS) method for (N_{Tx} \times N_{Rx}) MIMO-OFDM system.</td>
<td>52</td>
</tr>
<tr>
<td>3.15</td>
<td>Power spectrum performance (a) WLAN (b) WiMAX of proposed (APS) method for (N_{Tx} \times N_{Rx}) MIMO-OFDM system.</td>
<td>53</td>
</tr>
<tr>
<td>3.16</td>
<td>Power spectrum performance (a) WLAN (b) WiMAX of proposed (ATS) method for (N_{Tx} \times N_{Rx}) MIMO-OFDM system.</td>
<td>54</td>
</tr>
<tr>
<td>3.17</td>
<td>BER comparison of proposed (a) APS and (b) ATS PAPR reduction method for MIMO-OFDM ((N_{Tx} \times N_{Rx})) system.</td>
<td>55</td>
</tr>
</tbody>
</table>
3.18 Complexity comparison in terms of (a) Multiplication and (b) Addition for MIMO-OFDM \((N_T \times N_R) \) system. 56

4.1 Flow chart of proposed (ZF-MMSE-SIC) algorithm for equalization. 66

4.2 BER comparison for BPSK with various equalization techniques for \((N_T \times N_R) \) MIMO system. 68

4.3 BER comparison for QPSK with various equalization techniques for \((N_T \times N_R) \) MIMO system. 69

4.4 BER comparison for QAM-16 with various equalization techniques for \((N_T \times N_R) \) MIMO system. 69

4.5 BER comparison of BER for BPSK, QPSK, QAM for the proposed (ZF-MMSE-SIC) technique for \((N_T \times N_R) \) MIMO system. 70

4.6 BER performance for the proposed (ZF-MMSE-SIC) technique (a) WLAN and (b) WiMAX for \((N_T \times N_R) \) MIMO-OFDM system. 71

5.1 Non-linear model of a neuron. 75

5.2 Flow chart for training using Levenberg-Marquardt algorithm. 76

5.3 Performance of Levenberg-Marquardt (LM) training algorithm for proposed models. 78

5.4 Block diagram of proposed neural network based APS PAPR reduction method. 79

5.5 Internal configuration of neurons for proposed NN-AGP module. 80

5.6 Block diagram of proposed neural network based ATS PAPR reduction method. 81
5.7 Peak-to-average ratio performance (a) WLAN (b) WiMAX of proposed (NN-APS) method for \((N_T \times N_R)\) MIMO-OFDM system. 84

5.8 Peak-to-average ratio performance (a) WLAN (b) WiMAX of proposed (NN-ATS) method for \((N_T \times N_R)\) MIMO-OFDM system. 85

5.9 Power spectrum performance (a) WLAN (b) WiMAX of proposed (NN-APS) method for \((N_T \times N_R)\) MIMO-OFDM system. 86

5.10 Power spectrum performance (a) WLAN (b) WiMAX of proposed (NN-ATS) method for \((N_T \times N_R)\) MIMO-OFDM system. 87

5.11 BER comparison of proposed (a) NN-APS and (b) NN-ATS PAPR reduction methods for \((N_T \times N_R)\) MIMO-OFDM system. 88

5.12 Complexity comparison in terms of (a) Multiplication and (b) Addition for MIMO-OFDM \((N_T \times N_R)\) system. 90

6.1 Block diagram of Adaptive Network Fuzzy Inference System (ANFIS). 94

6.2 Flow chart of proposed ANFIS based \((N_T \times N_R)\) MIMO-OFDM system. 97

6.3 Block diagram of proposed ANFIS based APS PAPR reduction method for \((N_T \times N_R)\) MIMO-OFDM system. 99

6.4 Block diagram of proposed ANFIS based ATS PAPR reduction method for \((N_T \times N_R)\) MIMO-OFDM system. 101

6.5 Comparison of (a) CCDF and (b) BER of proposed (ANFIS-APS) method for \((N_T \times N_R)\) MIMO-OFDM system. 104

6.6 Power spectrum performance (a) WLAN (b) WiMAX of proposed (ANFIS-APS) method for \((N_T \times N_R)\) MIMO-OFDM system. 105
6.7 Peak-to-average ratio performance (a) WLAN (b) WiMAX of proposed (ANFIS-ATS) method for \((N_{Tx} \times N_{Rx})\) MIMO-OFDM system.

6.8 Power spectrum performance (a) WLAN (b) WiMAX of proposed (ANFIS-ATS) method for \((N_{Tx} \times N_{Rx})\) MIMO-OFDM system.

6.9 BER performance of proposed (ANFIS-ATS) method for WLAN and WiMAX.

6.10 Convergence time comparison for proposed ANFIS based PAPR reduction methods for MIMO-OFDM system.