List of Figures

Figures | Page No.
---|---
1. Flow chart for biological methods of organic solid waste recycling | 2
2. Flow chart for composting | 4
3. Flow chart for vermicomposting | 15
4. Continuous vermicomposting reactor | 17
5. Flow chart for coir pith production and recycling | 26
6. Flow chart for coffee husk production and recycling | 28
7. Map showing collection sites of different earthworm species in Pondicherry region | 31
8(a). Design of Vermicompost reactor | 34
8(b). Design of Compost reactor | 35
9. A diagramatic representation of the percentage of vermicast production in coir pith recycled by four earthworm species | 64
10. A diagramatic representation of the percentage of biomass production in coir pith recycled by four earthworm species | 64
11. Chemical characteristics of the five types of vermicasts of coir pith recycled with *Lamproty murritii* | 68
12. A diagramatic representation of the available NPK content in five types of vermicasts of coir pith recycled with *Lamproty murritii*. | 68
13. Chemical characteristics of the five types of vermicasts of coir pith recycled with *Eudrilus eugeniae* | 69
14. A diagramatic representation of the available NPK content in five types of vermicasts of coir pith recycled with *Eudrilus eugeniae*. | 69
15. Chemical characteristics of the five types of vermicasts of coir pith recycled with *Octochaetona serrata*. | 70
16. A diagramatic representation of the available NPK content in five types of vermicasts of coir pith recycled with *Octochaetona serrata*. | 70
17. Chemical characteristics of the five types of vermicasts of coir pith recycled with *Perionyx excavatus*. | 71
18. A diagramatic representation of the available NPK content in five types of vermicasts of coir pith recycled with *Perionyx excavatus*. | 71
19. A diagramatic representation of the percentage of vermicast production in coffee husk recycled by four earthworm species | 80
20. A diagramatic representation of the percentage of biomass production in coffee husk recycled by four earthworm species | 80
21. Chemical characteristics of the five types of vermicasts of coffee husk recycled with *Lamproty murritii* | 85
Figures

22. A diagramatic representation of the available NPK content in five types of vermicasts of coffee husk recycled with *Lampito mauritii*. 85

23. Chemical characteristics of the five types of vermicasts of coffee husk recycled with *Eudrilus eugeniae*. 86

24. A diagramatic representation of the available NPK content in five types of vermicasts of coffee husk recycled with *Eudrilus eugeniae*. 86

25. Chemical characteristics of the five types of vermicasts of coffee husk recycled with *Octochaetona serrata*. 87

26. A diagramatic representation of the available NPK content in five types of vermicasts of coffee husk recycled with *Octochaetona serrata*. 87

27. Chemical characteristics of the five types of vermicasts of coffee husk recycled with *Perionyx excavatus*. 88

28. A diagramatic representation of the available NPK content in five types of vermicasts of coffee husk recycled with *Perionyx excavatus*. 88

29(a). Temperature (°C) in coir pith compost reactors from the intial day to 45th day 98

29(b). Temperature (°C) in coir pith compost reactors from the 46th day to 90th day 99

30. Percentage of compaction observed on the composting of coir pith on 15th, 30th, 45th, 60th, 75th and 90th day 99

31. Chemical characteristics of nine types of composted (90th day) coir pith 101

32. A diagramatic representation of the available NPK content in nine types of composted coir pith 101

33(a). Temperature (°C) in coffee husk compost reactors from the intial day to 45th day 109

33(b). Temperature (°C) in coffee husk compost reactors from the 46th day to 90th day 109

34. Percentage of compaction observed on the composting of coffee husk on 15th, 30th, 45th, 60th, 75th and 90th day 110

35. Chemical characteristics of nine types of composted coffee husk 111

36. A diagramatic representation of the available NPK content in nine types of composted coffee husk 111

37. A diagramatic representation of the percentage of production of vermicasts and biomass in vermitreated (*Lampito mauritii*) composted coir pith 117

38. Chemical characteristics of nine types of vermicasts obtained on the conversion of composted coir pith by *Lampito mauritii* 118
<table>
<thead>
<tr>
<th>Figures</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>39. A diagramatic representation of the available NPK content in nine types of vermicasts obtained on the conversion of composted coir pith by Lampito mauriti</td>
<td>118</td>
</tr>
<tr>
<td>40. A diagramatic representation of the percentage of production of vermicasts and biomass in vermitreated(Lampito mauriti) composted coffee husk</td>
<td>123</td>
</tr>
<tr>
<td>41. Chemical characteristics of nine types of vermicasts obtained on the conversion of composted coffee husk by Lampito mauriti</td>
<td>124</td>
</tr>
<tr>
<td>42. A diagramatic representation of the available NPK content in nine types of vermicasts obtained on the conversion of composted coffee husk by Lampito mauriti</td>
<td>124</td>
</tr>
<tr>
<td>43. Statistical significance of the morphological and biochemical parameters in the pot study of Vigna mungo (L ) Hepper cv T-9</td>
<td>139</td>
</tr>
<tr>
<td>44. A diagramatic representation of the yield parameters obtained with different vermicasts in the pot study of Vigna mungo (L ) Hepper cv T-9</td>
<td>141</td>
</tr>
<tr>
<td>45. A diagramatic representation of percentage of inhibition on Rhizoctona solani by 20% water extract of coir pith and coffee husk vermicasts</td>
<td>145</td>
</tr>
<tr>
<td>46. A diagramatic representation of percentage of inhibition on Rhizopus stolonifer by 20% water extract of coir pith and coffee husk vermicasts</td>
<td>152</td>
</tr>
<tr>
<td>47. FT-IR Spectra of coir pith vermicast recycled by Eudrilus eugeniae, pure coir pith and pure cowdung</td>
<td>155</td>
</tr>
<tr>
<td>48. FT-IR Spectra of coffee husk vermicast recycled by Eudrilus eugeniae, pure coffee husk and pure cowdung</td>
<td>158</td>
</tr>
<tr>
<td>49. FT-IR Spectra of composted coir pith (cell A-I), 100% coir pith vermicast and pure coir pith</td>
<td>161</td>
</tr>
<tr>
<td>50. FT-IR Spectra of composted coffee husk (cell A-I), 100% coffee vermicast and pure coffee husk</td>
<td>163</td>
</tr>
<tr>
<td>51. Flowchart of elutes obtained with 100% CP VC extract in Silica-Gel column chromatography using different organic solvents</td>
<td>167</td>
</tr>
<tr>
<td>52. FT-IR Spectra of elutes of 100% CP VC that developed bands in TLC and 100% CP VC extract</td>
<td>168</td>
</tr>
<tr>
<td>53. Flowchart of elutes obtained with 1 1 CD CH VC extract in Silica-Gel column chromatography using different organic solvents</td>
<td>170</td>
</tr>
<tr>
<td>54. FT-IR Spectra of elutes of 1 1 CD CH VC that developed bands in TLC and 1 1 CD CH VC extract</td>
<td>171</td>
</tr>
</tbody>
</table>