CONTENTS

Acknowledgements .. I - II
List of tables .. III - V
List of figures .. VI - VII

01. General Introduction .. 1 - 20
 1.1 Chemical constituents of chromosomes
 1.1.2. Assembly of Chromosomal Constituents into chromosome
 1.2 Biology of the *Perna viridis* (Linnaeus, 1758)
 1.2.1 Taxonomic Position of *Perna viridis*
 1.2.2 Distribution
 1.2.3 Reproduction and Growth
 1.3 Need of the present thesis
 1.3.1. Aquaculture Practices
 1.3.2. Chromosomes and Cytotaxonomy
 1.3.3. Cytogenetics and Environmental Impact assessment
 1.3.4. Gene mapping
 1.4. Review of literature
 1.4.1 Cytogenetic studies in Marine animals
 1.4.2 Cytogenetic Studies in Phylum Mollusca
 1.5. Aims and Objectives of the Thesis
 1.5.1. Mitotic chromosome analysis
 1.5.2 Constitutive heterochromatin Banding
 1.5.3 Localization of Ag-NOR Regions
 1.5.4. Chromosome Engineering by induction of triploidy
 1.5.5. Chromosome aberration Studies
 1.5.6. Gene probes and Mapping

02. Materials and Methods ... 21 - 47
 1. Mitotic Chromosome Analysis
 1.1. Animal collection and acclimatization
 1.2. Colchicine treatment and tissue fixation
 1.3. Micro slides Pretreatment
 1.4. Air-dried slides preparation
 1.5. Staining
 1.6 Observations
 1.6.1 Mitotic Index
 1.6.2 Diploid chromosome number
 1.6.3 Chromosome structure analysis
 1.7. Photography
II. Constitutive Heterochromatin Banding
II.A.1 Animal collection and acclimatization
II.A.2 Colchicine treatment
II.A.3 Cell suspension preparation and fixation
II.A.4 Micro slides Pretreatment
II.A.5 Air-dried slide preparation
II.A.6 Staining
II.A.7 Aging
II.A.8 C–banding procedure
II.A.9 Observation
II.A.10 Photography

III. Nucleolus Organizer Regions
III.A.1 Animal collection and acclimatization
III.A.2 Experiment 1. Metaphase chromosome preparation from larval tissue
 III.A.2.1 Spawning and fertilization
 III.A.2.2 Larval tissue fixation
 III.A.2.3 Micro slides Pretreatment
 III.A.2.4 Air-dried slides preparation
 III.A.2.5 Aging
 III.A.2.6 Silver staining
 III.A.2.7 Scoring
III.B.2 Experiment 2. Metaphase chromosome preparation from Adult
 III.B.2.1 Colchicine treatment and tissue fixation
 III.B.2.2 Micro slides Pretreatment
 III.B.2.3 Air-dried slide preparation
 III.B.2.4 Aging
 III.B.2.5 Silver staining
 III.B.2.6 Scoring

IV. Chromosome Engineering by Triploidy Induction
IV.A.1 Animal collection and acclimatization
IV.A.2 Induced spawning and fertilization
IV.A.3 Polar body extrusion time

IV.B Heat shock treatment
 IV.B.1 Colchicine treatment and tissue fixation
 IV.B.2 Air-dried slides preparation
 IV.B.3 Staining

IV.C. Cytochalasin B (CB) treatment
 IV.C.1 Colchicine treatment and tissue fixation
 IV.C.2 Air-dried slide preparation
 IV.C.3 Staining

IV.D. Cumulative effect of Heat shock and Cytochalasin B treatment
 IV.D.1. Colchicine treatment and tissue fixation
 IV.D.2. Air-dried slide preparation
IV.D.3. Staining

IV.E. Observations

V. Chromosome Aberrations
V.A. Animal collection and acclimatization

Chromosome aberrations in larvae
V.B.1 Induced spawning and fertilization
C. Atrazine
V.C.1. 24hr. LC 50 for Atrazine
V.C.2. Sub lethal Atrazine concentration treatment
V.C.3. Colchicine treatment and larval tissue fixation
V.C.4. Air-dried slide preparation
V.C.5. Staining
V.C.6. Scoring
V.C.7. Statistical analysis
V.D. Dichlorvos
V.D.1. 24hr. LC50 for Technical grade Dichlorvos
V.D.2. Sub lethal Dichlorvos concentration treatment
V.D.3. Colchicine treatment and larval tissue fixation
V.D.4. Air-dried slide preparation
V.D.5. Staining
V.D.6. Scoring
V.D.7. Statistical analysis

Chromosome aberration in adults
V.E. Atrazine
V.E.1. 96hr. LC50 for Atrazine
V.E.2. Sub lethal Atrazine concentration treatment
V.E.3. Colchicine treatment and fixation of Branchial roots of the gill tissue
V.E.4. Air-dried slide preparation
V.E.5. Staining
V.E.6. Scoring
V.E.7. Statistical analysis
V.F. Dichlorvos
V.F.1. 96hr. LC50 for Dichlorvos
V.F.2. Sub lethal dichlorvos concentration treatment
V.F.3. Colchicine treatment and fixation of Branchial roots of the gill tissue
V.F.4. Air-dried slide preparation
V.F.5. Staining
V.F.6. Scoring
V.F.7. Statistical analysis

VI. Gene probes and Mapping
VI.A. Animal collection and acclimatization
VI.B. Genomic DNA extraction and 18S rRNA gene amplification
VI.B.1. Tissue excision
VI.B.2. DNA Extraction
VI.B.3. Primer designing
<table>
<thead>
<tr>
<th>VI.B.4. Polymerase Chain Reaction</th>
<th>48 - 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.B.5. PCR product Purification</td>
<td></td>
</tr>
<tr>
<td>VI.B.6. Sequencing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI.C. Non radioactive DNA labeling with Digoxigenin (DIG) and DNA Probe construction</th>
<th>65 - 72</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.C.1. DNA Probe synthesis Reaction</td>
<td></td>
</tr>
<tr>
<td>VI.C.2. Molecular weight determination of the labeled probe</td>
<td></td>
</tr>
<tr>
<td>VI.C.3. Termination of labeling reaction</td>
<td></td>
</tr>
<tr>
<td>VI.C.4. Purification of the labeled probes</td>
<td></td>
</tr>
<tr>
<td>VI.D. Metaphase chromosome preparation</td>
<td></td>
</tr>
<tr>
<td>VI.D.1. Colchicine treatment and fixation of Branchial roots of the gill tissue</td>
<td></td>
</tr>
<tr>
<td>VI.D.2. Micro slides Pretreatment</td>
<td></td>
</tr>
<tr>
<td>VI.D.3. Air-dried slide preparation</td>
<td></td>
</tr>
<tr>
<td>VI.D.4. Aging of metaphase slides</td>
<td></td>
</tr>
<tr>
<td>VI.D.5. Pretreatment of metaphase slides</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI.E. Fluorescence in situ hybridization</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.E.1. Denaturation and hybridization</td>
<td></td>
</tr>
<tr>
<td>VI.F. Scoring</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI.G. Photography</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>03. Mitotic Chromosome Analysis</th>
<th>73 - 86</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Introduction</td>
<td></td>
</tr>
<tr>
<td>3.2 Results</td>
<td></td>
</tr>
<tr>
<td>3.2.1 Mitotic Index</td>
<td></td>
</tr>
<tr>
<td>3.2.2 Diploid Chromosome number</td>
<td></td>
</tr>
<tr>
<td>3.2.3 Chromosome structure Analysis</td>
<td></td>
</tr>
<tr>
<td>3.3. Discussion</td>
<td></td>
</tr>
<tr>
<td>3.4. Conclusion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>04. Constitutive Heterochromatin Banding</th>
<th>87 - 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Introduction</td>
<td></td>
</tr>
<tr>
<td>4.2. Results</td>
<td></td>
</tr>
<tr>
<td>4.3. Discussion</td>
<td></td>
</tr>
<tr>
<td>4.4. Conclusion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>05. Nucleolus organizer regions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>5.2. Results</td>
<td></td>
</tr>
<tr>
<td>5.3 Discussion</td>
<td></td>
</tr>
<tr>
<td>5.4. Conclusion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>06. Chromosome Engineering by Triploidy Induction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>6.2. Results</td>
<td></td>
</tr>
<tr>
<td>6.2.1 Heat shock</td>
<td></td>
</tr>
<tr>
<td>6.2.2 Cytochalasin B</td>
<td></td>
</tr>
<tr>
<td>6.2.3 Cumulative effect of Heat shock and Cytochalasin B</td>
<td></td>
</tr>
<tr>
<td>6.3. Discussion</td>
<td></td>
</tr>
<tr>
<td>6.4 Conclusion</td>
<td></td>
</tr>
</tbody>
</table>
07. Chromosome Aberrations .. 96 -128

7.1 Introduction
 7.1.1 Atrazine
 7.1.2 Dichlorvos

7.2 Results
 7.2. A. LC 50 for 36 hour larval stages of *Perna viridis*
 7.2. A1. 24 hr. LC 50 Atrazine
 7.2. A2. 24hr. LC 50 Dichlorvos
 7.2. A3. 96 hr. LC 50 of Atrazine for *Perna viridis*
 7.2. A4. 96 hr. LC 50 of technical grade dichlorvos for *Perna viridis*

 7.2. B. Chromosome aberrations in larvae
 7.2. B1. Chromosome aberration in larvae on exposure to Atrazine
 7.2. B2. Chromosome aberration in larvae on exposure to technical grade dichlorvos

 7.2. C. Chromosome aberration in adults
 7.2. C1. Chromosome aberration upon exposure to Atrazine
 7.2. C2. Mitotic Index in control and Atrazine treated green mussels
 7.2. C3. Chromosome aberration upon exposure to Dichlorvos
 7.2. C4. Mitotic Index in control and Dichlorvos treated green mussels

7.3. Discussion
 7.3.1 Atrazine
 7.3.2 Dichlorvos

7.4 Conclusion

08. Gene probes and Mapping .. 129 - 141

8.1 Introduction
 8.1.1 The Digoxigenin (DIG)
 8.1.2 Nucleic Acid labeling
 8.1.3 Nick translation
 8.1.4 18S ribosomal RNA gene

8.2. Results
 8.2.1 Genomic DNA extraction
 8.2.2 18S ribosomal gene amplification and sequencing
 8.2.3 18S ribosomal RNA gene probe and molecular weight determination
 8.2.4 Fluorescent *in situ* hybridization of 18S ribosomal RNA gene
 8.2.5 Physical mapping of 18S gene

8.3. Discussion
8.4. Conclusion

09. Summary ... 142 - 147

10. Bibliography .. 148 - 181

Appendix I & Appendix II .. 182 - 186