CONTENTS

<table>
<thead>
<tr>
<th>CHAPTERS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1-17</td>
</tr>
<tr>
<td>1.1 Plant in vitro cultures</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Somatic embryogenesis</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Direct and indirect somatic embryogenesis</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Somatic embryo formation and development</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 Morphology versus embryogenic capacity</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4 Plant growth regulators (PGRs)</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4.1 Auxins</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4.2 Embryogenesis with PGRs association</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4.3 Cytokinins</td>
<td>7</td>
</tr>
<tr>
<td>1.2.4.4 Gibberellins</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4.5 Abscisic acid (ABA)</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4.6 Ethylene</td>
<td>9</td>
</tr>
<tr>
<td>1.2.5 Significance of somatic embryogenesis</td>
<td>9</td>
</tr>
<tr>
<td>1.2.6 Limitation of somatic embryogenesis</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Protoplast isolation study</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1 Sources for protoplasts</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2 Protoplast technology and history</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3 Protoplast and tissue culture</td>
<td>11</td>
</tr>
<tr>
<td>1.3.4 Factors affecting protoplast isolation</td>
<td>12</td>
</tr>
<tr>
<td>1.3.4.1 Enzyme mixture</td>
<td>12</td>
</tr>
<tr>
<td>1.3.4.2 Concentration of osmoticum</td>
<td>12</td>
</tr>
<tr>
<td>1.3.4.3 Incubation period</td>
<td>12</td>
</tr>
<tr>
<td>1.3.4.4 Age of callus</td>
<td>12</td>
</tr>
<tr>
<td>1.3.5 Application of protoplast technology</td>
<td>12</td>
</tr>
<tr>
<td>1.3.5.1 Somatic and gameto-somatic hybridization</td>
<td>13</td>
</tr>
<tr>
<td>1.3.5.2 Transformation of plants by uptake of DNA into protoplasts</td>
<td>13</td>
</tr>
<tr>
<td>1.3.5.3 Protoclonal and somaclonal variation</td>
<td>13</td>
</tr>
<tr>
<td>1.3.5.4 Protoplasts used in other investigations</td>
<td>14</td>
</tr>
</tbody>
</table>
3.2 Medium constituents and preparation of stock solutions

3.2.1 Inorganic nutrients

3.2.1.1 Macro elements
3.2.1.2 Microelements
3.2.1.3 Iron Stock

3.2.2 Organic Nutrients

3.2.2.1 Vitamins
3.2.2.2 Amino-acids
3.2.2.3 Other organic supplements

3.2.3 Myo-inositol

3.2.4 Carbon source

3.2.5 Plant growth regulators (PGRs)

3.2.5.1 Auxin
3.2.5.2 Cytokinin
3.2.5.3 Giberellic acid

3.2.6 Activated charcoal (Carbonised wood)

3.3 Selection of media

3.4 Preparation of MS medium

3.4.1 Macronutrients
3.4.2 Micronutrient
3.4.3 Iron stock solution
3.4.4 Vitamins
3.4.5 Amino acids
3.4.6 Myo- Inositol

3.5 Methods of sterilization

3.5.1 Dry heat sterilization
3.5.2 Surface sterilization of plant material
3.5.3 Sterilizing agents

3.6 Induction of somatic embryogenesis

3.7 Establishment of suspension culture

3.8 Preparation of digestion/enzyme mixture for protoplast isolation study

3.8.1 Protoplast isolation
3.8.2 Plating efficiency
3.8.3 Protoplast culture 49
3.8.4 Plant regeneration from cultured protoplasts 49

3.9 Elicitor treatment 49
3.9.1 Fresh weight/dry weight 50
3.9.2 Biochemical analysis 50
 3.9.2.1 Estimation of protein 50
 3.9.2.2 Estimation of proline 51
 3.9.2.3 Estimation of total sugar 51
3.9.3 Enzymatic activity 51
 3.9.3.1 Catalase (CAT) 51
 3.9.3.2 Superoxide dismutase (SOD) 52
 3.9.3.3 Ascorbate peroxidase (APX) 52
 3.9.3.4 Glutathione reductase (GR) 52

3.10 Encapsulation 53
 3.10.1 Storage of synthetic seeds 53

3.11 Quantification of VB (Vinblastine) and VC (Vincristine) by HPTLC 53
 3.11.1 Extraction 53
 3.11.2 Preparation of stock solution and Calibration curve (standard curve) 53
 3.11.3 HPTLC Instrumentation and conditions 54
 3.11.4 Scanning 54
 3.11.5 Quantification of VB and VC in different samples 54

3.12 Statistical analysis 54
 3.12.1 Mean (\(\bar{x}\)) 55
 3.12.2 Standard error 55

4.0 RESULTS 56-69
4.1 Explants and callus induction 56
4.2 Induction of various stages of embryos from hypocotyls-embryogenic callus in PGR added medium 56
 4.2.1 Maturation and Germination of somatic embryos of NEC origin 56
4.3 Establishment of suspension culture and embryo formation 56
4.4 Effect of different enzyme mixtures on the protoplast yield and viability 57
with and without osmoticum

4.4.1 Effect of different PGRs on the formation of micro colonies after spreading the liquid media containing actively divided protoplasts on solid MS medium

4.4.2 Number of somatic embryos formed in NEC and PDEC

4.4.3 Callus biomass of NEC and PDEC tissues

4.4.4 Effect of different GA3 concentrations on embryo maturation derived from protoplast culture

4.5 Embryo/ tissue biomass at induction and proliferation stages

4.6 Biochemical parameters
 4.6.1 Total protein content
 4.6.2 Proline content
 4.6.3 Sugar content

4.7 Enzymatic activities
 4.7.1 CAT, APX, DOD and GR activities

4.8 Maturation and germination of embryos

4.9 Embryo/ tissue biomass at maturation and germination stages

4.10 Biochemical parameters
 4.10.1 Total protein content
 4.10.2 Proline content
 4.10.3 Sugar content

4.11 Enzyme activities
 4.11.1 CAT, APX SOD and GR

4.12 Protein, proline and sugar level of embryos developed from PDEC
 4.12.1 Protein
 4.12.2 Proline
 4.12.3 Sugar

4.13 CAT, APX, SOD and GR activities in embryos developed from PDEC
 4.13.1 CAT
 4.13.2 APX
 4.13.3 SOD
 4.13.4 GR

4.14 Biochemical attributes of shoots developed from NEC, PDEC and different YE treated PDEC
4.15 Enzyme activities of shoots developed from NEC, PDEC and PDEC treated with different treatments of YE

4.16 Quantification (µg gm\(^{-1}\) dry weight) of vinblastine (VB)

4.16.1 VB content in NEC and PDEC tissues

4.16.2 Effect of YE on VB yield

4.16.3 Quantification (µg gm\(^{-1}\) dry weight) of vincristine (VC)

4.16.4 VC content in NEC and PDEC tissues

4.16.5 Effect of YE on VC yield

4.17 Encapsulation

4.17.1 Effect of sodium alginate percentage on synthetic seed formation and conversion rate

4.17.2 Effect of molar strength of calcium chloride and its exposure time on conversion rate

4.17.3 Effect of plant growth regulators (PGRs) on conversion rate

4.17.4 Different storage temperatures and conversion rate of synthetic seeds

4.17.5 Encapsulation of different somatic embryos

4.17.6 Effect of storage time (duration) on conversion of synthetic seeds

4.17.7 Effect of Activated charcoal (AC) on germination of synthetic seeds

5.0 DISCUSSION

6.0 SUMMARY

7.0 REFERENCES