CHAPTER IV

THE TERNARY DIOPHANTINE EQUATION

\[Z^{2n} = DX^2 + Y^2 \]

* Published in BULLETIN OF PURE AND APPLIED SCIENCES
CHAPTER IV

THE TERNARY DIOPHANTINE EQUATION

\[Z^{2n} = DX^2 + Y^2 \]

The Ternary Diophantine equation of the title

\[Z^{2n} = DX^2 + Y^2 \quad (4.1) \]

arises while attempting to find the square roots of a complex binomial quadratic surd of form \((Y + iX\sqrt{D})\), \(D\) being a square free integer and whose integral solutions for \(n = 1, 2\) are well known. In this chapter, we present a method to obtain an infinite number of nontrivial integral solutions of equation (4.1) for all positive integral values of \(n\). Also, we present a few interesting relations among the solutions. Some numerical examples are also given.

Employing the solutions \((X_0, Y_0, Z_0)\) of the equation (4.1) when \(n = 1\) and suitably repeatedly applying the lemma of BrahmaGupta, one arrives at
an integral solution of (4.1) denoted by \((x_{n-1}^{(1)}, y_{n-1}^{(1)}, z_{n-1}^{(1)}) \) and represented through the recurrence relations

\[
x_{n-1}^{(1)} = x_0 y_{n-2} - y_0 x_{n-2}, \quad n \geq 2
\]

\[
y_{n-1}^{(1)} = y_0 y_{n-2} + D x_0 x_{n-2},
\]

\[
z_{n-1}^{(1)} = z_0
\]

(4.2)

where

\[
x_0 = 2pq, \quad y_0 = q^2 - Dp^2, \quad z_0 = q^2 + Dp^2,
\]

and

\[
y_{n-2}^2 + D x_{n-2}^2 = z_{n-2}^{(0,4)}
\]

(4.3)

The second solution \((x_{n-1}^{(2)}, y_{n-1}^{(2)}, z_{n-1}^{(2)}) \) of equation (4.1) is obtained by using the following transformations

\[
X_{n-1}^{(2)} = \mu n X_{n-1}^{(1)}, \quad Y_{n-1}^{(2)} = mh - \mu n Y_{n-1}^{(1)}, \quad Z_{n-1}^{(2)} = \mu Z_{n-1}^{(1)}
\]

(4.4)

where \(\ell, m, \mu \) are non-zero constants of our choice and \(h \) is an arbitrary non-zero constant to be determined.

Substituting (4.4) in (4.1) we get

\[
h = \frac{2\mu n (D\ell x_{n-1}^{(1)} + m y_{n-1}^{(1)})}{D\ell^2 + m^2}
\]

(4.5)

and hence
The repetition of the above process leads to a sequence of integral solution of the equation (4.1) expressed as

$$
\begin{bmatrix}
X_{n+1}^{(2)} \\
Y_{n+1}^{(2)} \\
Z_{n+1}^{(2)}
\end{bmatrix} =
\begin{bmatrix}
\mu^*(D\ell^2 - m^2) & 2\mu^*\ell m & 0 \\
2\mu^* Dlm & \mu^*(m^2 - D\ell^2) & 0 \\
0 & 0 & \mu(D\ell^2 + m^2)
\end{bmatrix}
\begin{bmatrix}
Y_{n-2} & -X_{n-2} & 0 \\
DX_{n-2} & Y_{n-2} & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_0 \\
Y_0 \\
Z_0
\end{bmatrix},
$$

(4.6)

where \(s = 0, 1, 2, 3, \ldots \).

For the sake of simplicity and brevity, we present the solutions of equation (4.1) for some particular values of \(D \) and \(n \).

Table (4a)

<table>
<thead>
<tr>
<th>Equations</th>
<th>((X_0, Y_0, Z_0), n = 1)</th>
<th>((X_1, Y_1, Z_1), n = 2)</th>
<th>((X_2, Y_2, Z_2), n = 3)</th>
<th>((X_3, Y_3, Z_3), n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z^{2n} = 3X^2 + Y^2)</td>
<td>((2, -2, 4))</td>
<td>((-8, -8, 4))</td>
<td>((-32, -32, 4))</td>
<td>((-128, -128, 4))</td>
</tr>
<tr>
<td>(Z^{2n} = 8X^2 + Y^2)</td>
<td>((2, -7, 9))</td>
<td>((-28, 17, 9))</td>
<td>((-162, -567, 9))</td>
<td>((-2268, 1377, 9))</td>
</tr>
<tr>
<td>(Z^{2n} = 10X^2 + Y^2)</td>
<td>((2, -9, 11))</td>
<td>((-36, 41, 11))</td>
<td>((-242, 1089, 11))</td>
<td>((-4356, 4961, 11))</td>
</tr>
<tr>
<td>(Z^{2n} = 11X^2 + Y^2)</td>
<td>((2, -10, 12))</td>
<td>((-40, 56, 12))</td>
<td>((-288, 1440, 12))</td>
<td>((-5760, 8064, 12))</td>
</tr>
</tbody>
</table>
From the solutions (4.2) we obtain the following relations:

(i) \[Y_{n-1}^{(1)} X_{n-2} - DX_{n-2} X_{n-1}^{(1)} = Y_0 \left(Z_{n-2}^{(n-1)} \right) \]

(ii) \[X_{n-1}^{(1)} - Y_{n-1}^{(1)} = Y_{n-2} \left(X_0 - Y_0 \right) - X_{n-2} \left(Y_0 + DX_0 \right) \]

(iii) \(\left(Z_{n-1}^{(0)} \right)^n = Z_0 \left(Z_{n-2}^{(n-1)} \right) \)

(iv) \[X_{n-1}^{(0)} Y_{n-1}^{(0)} = X_0 Y_0 \left(Y_{n-2}^2 - DX_{n-2}^2 \right) + X_{n-2} Y_{n-2} \left(DX_0^2 - Y_0^2 \right) \]

Besides the above results, from the solutions (4.7) one may observe the following relations:

(i) \(\frac{X_6}{X_0} = \frac{X_2}{X_1} = \left(\frac{X_2}{X_0} \right)^3 = \left(\frac{X_3}{X_1} \right)^3 = \left(\frac{X_4 X_3}{X_0 X_1} \right) = \left(\frac{X_5 X_4}{X_0 X_1} \right) = \left(\frac{X_6}{X_0} \right)^3 = \left(\frac{X_6}{X_1} \right)^3 \)

(ii) \(\sum_{f=x,y,z}^{\infty} f_{S+2} = 3 \text{ cube root of } \prod_{f=x,y,z}^{\infty} \frac{f_{S+2}}{f_{S}} \)

(iii) \(\frac{f_{S+2}}{f_0} = \frac{f_{S+1}}{f_1} = \left(\frac{f_2}{f_0} \right)^s = \left(\frac{f_3}{f_1} \right)^s \)

(iv) \(f_{S+2k} = \frac{(f_{S+2})^2}{f_s^2} \)

(v) \(\prod_{S=1}^{n} \left(\frac{f_{2k}}{f} \right)^{(2k)f=S_1} = (D+1)^{2^k S_k}, \quad k = 1,2,3 \)

\((D+1)^{n}, \quad k = 0 \)

where \(S_k = 1^k + 2^k + 3^k + \ldots + n^k \)

in which 'f' represents either X or Y or Z.
Further, define a matrix M given by

$$M = \begin{pmatrix} a & \pm b \sigma^q \\ Db \sigma^q & \mp a \end{pmatrix}$$

where a, b and q are non-zero integral constants.

We write

$$M^\beta \begin{pmatrix} \tilde{X}^{(s+1)}_{\beta(n-1)} \\ \tilde{Y}^{(s+1)}_{\beta(n-1)} \end{pmatrix} = \begin{pmatrix} \tilde{X}^{(s+1)}_{\beta(n-1)} \\ \tilde{Y}^{(s+1)}_{\beta(n-1)} \end{pmatrix}^t,$$

where in $\beta \geq 1$ and t is the transpose.

It is seen that

$$\begin{pmatrix} \tilde{X}^{(s+1)}_{\beta(n-1)} \\ \tilde{Y}^{(s+1)}_{\beta(n-1)} \\ Z^{(s+1)}_{\beta} \end{pmatrix}$$

is an integral solution of the equation

$$\left(a^2 + Db^2 \sigma^{2q}\right) Z^{2n} = DX^2 + Y^2 \quad \text{(4.8)}$$

As an application of (4.1), we determine the positive square root of a binomial quadratic surd $Y_{n-1}^{(l)} + iX_{n-1}^{(l)} \sqrt{D}$.

Set

$$\sqrt{Y_{n-1}^{(l)}} + i \sqrt{D} X_{n-1}^{(l)} = A + iB \sqrt{D} \quad \text{(4.9)}$$
Since the complex roots occur in pairs we have

\[\sqrt{y_{n-1}^{(0)} - i x_{n-1}^{(0)} \sqrt{D}} = A - iB \sqrt{D} \] \hspace{1cm} (4.10)

Multiplying (4.9) and (4.10), we get

\[A^2 + DB^2 = \sqrt{(y_{n-1}^{(0)})^2 + D(x_{n-1}^{(0)})^2} = (Z_{n-1}^{(0)})^p = Z_0^a \] \hspace{1cm} (4.11)

we write

\[A = a - D\bar{\mu}, \quad B = a + \bar{\mu} \] \hspace{1cm} (4.12)

where \(\bar{\mu} \) is a non-zero constant of our choice and \(a \) is an arbitrary non-zero constant to be determined. From equations (4.11) and (4.12), we get

\[a = \sqrt{\frac{Z_0^a}{D + 1 - \bar{\mu}^2 D}} \] \hspace{1cm} (4.13)

It is to be noted here that the square root on the R.H.S of the above equation is evaluated only for the values of \(Z_0 \) obtained from equation (4.3) when \(p \) and \(q \) take the same values, while for other values of \(p \) and \(q \), though we get integral values of ‘\(a \)’ the equation (4.9) is not exactly satisfied.

Thus, in view of (4.12), one can determine the values of \(A \) and \(B \).

A few examples are presented in the following Table (4b).
<table>
<thead>
<tr>
<th>Equations</th>
<th>n</th>
<th>p</th>
<th>q</th>
<th>((X_{n-1}^{(i)}, Y_{n-1}^{(i)}, Z_{n-1}^{(i)}))</th>
<th>(\sqrt[n]{Y_{n-1}^{(i)} + i\sqrt[D]{X_{n-1}^{(i)}}})</th>
<th>(A + iB\sqrt[D]{D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z^{2n} = 2X^2 + Y^2)</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>((-36, -63, 3)) ((-9216, -16128, 12))</td>
<td>(\sqrt{-63 + i\sqrt{2}(-36)})</td>
<td>(-3 + i6\sqrt{2})</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>(\sqrt{-16128 + i\sqrt{2}(-9216)})</td>
<td>(-48 + i96\sqrt{2})</td>
<td></td>
</tr>
<tr>
<td>(Z^{2n} = 3X^2 + Y^2)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>((-32, -32, 4)) ((-2048, -2048, 16))</td>
<td>(\sqrt{-32 + i\sqrt{3}(-32)})</td>
<td>(-4 + i\sqrt{3}(4))</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(\sqrt{-2048 + i\sqrt{3}(-2048)})</td>
<td>(-32 + i\sqrt{3}(32))</td>
<td></td>
</tr>
<tr>
<td>(Z^{2n} = 10X^2 + Y^2)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>((-242, -1089, 11)) ((-15488, -69696, 44))</td>
<td>(\sqrt{-1089 + i\sqrt{10}(-242)})</td>
<td>(-11 + i1\sqrt{10})</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(\sqrt{-69696 + i\sqrt{10}(-15488)})</td>
<td>(-88 + i88\sqrt{10})</td>
<td></td>
</tr>
<tr>
<td>(Z^{2n} = 11X^2 + Y^2)</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>((-5760, 8064, 12)) ((-1474560, -2064384, 48))</td>
<td>(\sqrt{8064 + i\sqrt{11}(-5760)})</td>
<td>(-120 + i24\sqrt{11})</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>(\sqrt{-2064384 + i\sqrt{11}(-1474560)})</td>
<td>(-1920 + i384\sqrt{11})</td>
<td></td>
</tr>
</tbody>
</table>