CHAPTER VI

NON-IDEAL INTEGER SOLUTIONS OF SECOND DEGREE PROUHET TARRY ESCOTT PROBLEM

CHAPTER VI

NON-IDEAL INTEGER SOLUTIONS OF SECOND DEGREE PROUHET TARRY ESCOTT PROBLEM

Diophantine equations of the form

\[\sum_{i=1}^{n} a_i = \sum_{j=1}^{n} b_j \] \hspace{1cm} (6.1)

specific examples of (6.1) are considered, namely the equations
which have \(s, m (=n) = 4,4; 3,2; 5,4; 4,2; 7,4; 5,3; \) and \(6,3. \)

Further, the notation

\[
A_1, A_2, ..., A_p^{n_1, n_2, ..., n_p} = B_1, B_2, ..., B_q
\]

(6.2)

designates a so-called multidegree equality and means that the sum of the
numbers on the left equals the sum of the numbers on the right for each of
the \(r(n_1, n_2, ..., n_p) \) positive integral powers of the numbers. In [58] A.Glodin
(1948), parametric solutions of the two multi-degreed equalities

\[
A_1, A_2, A_3^{1,4} = B_1, B_2, B_3, \quad A_3 \neq A_1 + A_2, \quad B_3 \neq B_1 + B_2
\]

and

\[
C_1, C_2, ..., C_7^{1,2,4,6,8} = D_1, D_2, ..., D_7
\]

are obtained. A special case of (6.2) is the \((k, s) \) multigrade Diophantine
equation of the form

\[
\sum_{i=1}^{s} x_i^{j} = \sum_{j=1}^{s} y_i^{j} \quad \text{,} \quad (j=1,2, ..., k)
\]

(6.3)

The above equation, conveniently denoted by the symbol

\[
x_1, x_2, ..., x_s = y_1, y_2, ..., y_s
\]

(6.4)

In this chapter, a general form of non-ideal non-trivial parametric integral solutions of the system (6.4), with $k = 2$, $s = 4$ distinct from that of [9] J.Choubey (1991), has been obtained. By considering an appropriate choice of a non ideal integral solution of the 5th degree equation of the form

$$x_1, x_2, x_3, x_4, -x_1, -x_2, -x_3, -x_4 = y_1, y_2, y_3, y_4, -y_1, -y_2, -y_3, -y_4$$

a sequence of integral solutions of the system

$$\sum_{i=1}^{4} (x_i^2)' = \sum_{i=1}^{4} (y_i^2)', \quad j = 1, 2$$
has been determined, from which, after performing some algebra, solutions of the systems

\[\sum_{i=1}^{3} (x_i^2)^j = \sum_{i=1}^{3} (y_i^2)^j \quad \text{and} \]
\[\sum_{i=1}^{10} (x_i^2)^j = \sum_{i=1}^{10} (y_i^2)^j , \text{where } j = 1,2,3 \text{ are deduced.} \]

Method of solving \(x_1, x_2, x_3, x_4 = y_1, y_2, y_3, y_4 \)

Choosing distinct integers \(h, g, \alpha, \) such that

\(x_1 = y_1 - h, \quad x_2 = y_2 + \alpha, \quad x_3 = y_3 - g, \) \(\text{the first relation of} \)

\[x_1, x_2, x_3, x_4 = y_1, y_2, y_3, y_4, \] \((6.5) \)

gives

\[x_4 = y_4 + h - \alpha + g. \]

Let \(h = GB, \quad \alpha = GA, \quad g = GC \) so that \(g.c.d(A, B, C) = 1 \) \((6.6) \)

Taking \(GA - y_4 = B_2, \quad GC - x_4 = B_2, \) \(\text{the second relation of} \ (6.5) \text{is satisfied,} \)

provided

\[x_3 = \frac{y_3}{C} A + \frac{B_2}{C} (A - B - C) + \frac{B_2}{C} B. \]

If \(g.c.d(A, C) = g.c.d(B, C) = 1 \) and in view of \((6.6) \),
the above equation is written as

\[x_3 = lA + m(A - B - C) + nB \]

wherein \(\frac{y_2}{C} = l, \frac{B_2}{C} = m, \frac{B_3}{C} = n \).

Thus, it follows, after some algebra, that

\[x_1 = C(G - n) \quad y_1 = C(G - n) + GB \]

\[x_2 = Cl + GA \quad y_2 = Cl \]

\[x_3 = Al + (A - B - C)m + Bn \quad y_3 = Al + Bn + (A - B - C)m + GC \]

\[x_4 = GC + GB - Cm \quad y_4 = GA - Cm \]

exhibiting non ideal, nontrivial, 7 parametric \((A, B, C, l, m, n, G)\) integral solutions of (6.5).

Typical solutions are exhibited below:
Table (6a(i))

<table>
<thead>
<tr>
<th>S.No</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>m</th>
<th>n</th>
<th>G</th>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>x₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>16</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>ii</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-11</td>
<td>28</td>
<td>-3</td>
<td>14</td>
</tr>
<tr>
<td>iii</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-11</td>
<td>28</td>
<td>-18</td>
<td>3</td>
</tr>
<tr>
<td>iv</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>-22</td>
<td>45</td>
<td>-11</td>
<td>4</td>
</tr>
<tr>
<td>v</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>-2</td>
<td>33</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>vi</td>
<td>6</td>
<td>3</td>
<td>13</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>65</td>
<td>107</td>
<td>6</td>
</tr>
<tr>
<td>vii</td>
<td>8</td>
<td>9</td>
<td>23</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>92</td>
<td>157</td>
<td>-33</td>
</tr>
<tr>
<td>viii</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>19</td>
<td>170</td>
<td>275</td>
<td>27</td>
</tr>
<tr>
<td>ix</td>
<td>12</td>
<td>17</td>
<td>19</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>38</td>
<td>289</td>
<td>55</td>
</tr>
<tr>
<td>x</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>22</td>
<td>206</td>
<td>123</td>
</tr>
<tr>
<td>xi</td>
<td>8</td>
<td>17</td>
<td>19</td>
<td>7</td>
<td>11</td>
<td>2</td>
<td>7</td>
<td>95</td>
<td>189</td>
<td>-218</td>
</tr>
<tr>
<td>xii</td>
<td>2</td>
<td>11</td>
<td>13</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>17</td>
<td>65</td>
<td>99</td>
<td>-12</td>
</tr>
<tr>
<td>xiii</td>
<td>14</td>
<td>23</td>
<td>29</td>
<td>9</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>58</td>
<td>471</td>
<td>-31</td>
</tr>
<tr>
<td>xiv</td>
<td>16</td>
<td>29</td>
<td>31</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>62</td>
<td>676</td>
<td>25</td>
</tr>
<tr>
<td>xv</td>
<td>18</td>
<td>31</td>
<td>33</td>
<td>13</td>
<td>14</td>
<td>19</td>
<td>41</td>
<td>726</td>
<td>1167</td>
<td>179</td>
</tr>
</tbody>
</table>
It may be noted that through the application of the theorem due to Frolov ([13] H.L.Dorwart & O.E.Brown (1937)) one may obtain equivalent
solutions for each of the solutions presented above. Equivalent typical solutions for each of the above solutions are exhibited below:

Table (6b)

<table>
<thead>
<tr>
<th>S.No</th>
<th>M</th>
<th>K</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>35</td>
<td>-1</td>
<td>31</td>
<td>31</td>
<td>23</td>
<td>29</td>
<td>-5</td>
</tr>
<tr>
<td>ii</td>
<td>3</td>
<td>4</td>
<td>-29</td>
<td>88</td>
<td>-5</td>
<td>46</td>
<td>13</td>
<td>70</td>
<td>61</td>
<td>-44</td>
</tr>
<tr>
<td>iii</td>
<td>4</td>
<td>5</td>
<td>-39</td>
<td>117</td>
<td>-67</td>
<td>17</td>
<td>17</td>
<td>93</td>
<td>21</td>
<td>-103</td>
</tr>
<tr>
<td>iv</td>
<td>6</td>
<td>7</td>
<td>-125</td>
<td>277</td>
<td>-59</td>
<td>31</td>
<td>205</td>
<td>-35</td>
<td>139</td>
<td>-185</td>
</tr>
<tr>
<td>v</td>
<td>7</td>
<td>8</td>
<td>-6</td>
<td>239</td>
<td>316</td>
<td>323</td>
<td>309</td>
<td>64</td>
<td>386</td>
<td>113</td>
</tr>
<tr>
<td>vi</td>
<td>8</td>
<td>9</td>
<td>529</td>
<td>865</td>
<td>57</td>
<td>593</td>
<td>697</td>
<td>529</td>
<td>785</td>
<td>33</td>
</tr>
<tr>
<td>vii</td>
<td>2</td>
<td>5</td>
<td>189</td>
<td>319</td>
<td>-61</td>
<td>479</td>
<td>387</td>
<td>143</td>
<td>445</td>
<td>-49</td>
</tr>
<tr>
<td>viii</td>
<td>3</td>
<td>7</td>
<td>517</td>
<td>832</td>
<td>88</td>
<td>1360</td>
<td>1258</td>
<td>262</td>
<td>1057</td>
<td>220</td>
</tr>
<tr>
<td>ix</td>
<td>9</td>
<td>10</td>
<td>352</td>
<td>2611</td>
<td>505</td>
<td>2683</td>
<td>2341</td>
<td>1207</td>
<td>2728</td>
<td>-125</td>
</tr>
<tr>
<td>x</td>
<td>5</td>
<td>11</td>
<td>121</td>
<td>1041</td>
<td>626</td>
<td>756</td>
<td>481</td>
<td>726</td>
<td>1121</td>
<td>216</td>
</tr>
<tr>
<td>xi</td>
<td>13</td>
<td>14</td>
<td>1249</td>
<td>2471</td>
<td>-2820</td>
<td>573</td>
<td>2796</td>
<td>1743</td>
<td>-1091</td>
<td>-1975</td>
</tr>
<tr>
<td>xii</td>
<td>14</td>
<td>15</td>
<td>925</td>
<td>1401</td>
<td>-153</td>
<td>4453</td>
<td>3543</td>
<td>925</td>
<td>2941</td>
<td>-783</td>
</tr>
<tr>
<td>xiii</td>
<td>16</td>
<td>17</td>
<td>945</td>
<td>7553</td>
<td>-479</td>
<td>6929</td>
<td>6465</td>
<td>4193</td>
<td>6481</td>
<td>-2191</td>
</tr>
<tr>
<td>xiv</td>
<td>18</td>
<td>19</td>
<td>1135</td>
<td>12187</td>
<td>469</td>
<td>12169</td>
<td>11053</td>
<td>6715</td>
<td>11071</td>
<td>-2879</td>
</tr>
<tr>
<td>xv</td>
<td>19</td>
<td>20</td>
<td>13814</td>
<td>22193</td>
<td>3421</td>
<td>41098</td>
<td>37963</td>
<td>8171</td>
<td>29128</td>
<td>5264</td>
</tr>
</tbody>
</table>
As a special case, to solve system (6.5) wherein $\sum x_i = \sum y_i = 0$, we write

\[
\begin{align*}
x_1 &= -\alpha_1 + \alpha_2 + \alpha_3 \\
x_2 &= \alpha_1 - \alpha_2 + \alpha_3 \\
x_3 &= \alpha_1 + \alpha_2 - \alpha_3 \\
x_4 &= -\alpha_1 - \alpha_2 - \alpha_3
\end{align*}
\]

\[
\begin{align*}
y_1 &= -\beta_1 + \beta_2 + \beta_3 \\
y_2 &= \beta_1 - \beta_2 + \beta_3 \\
y_3 &= \beta_1 + \beta_2 - \beta_3 \\
y_4 &= -\beta_1 - \beta_2 - \beta_3
\end{align*}
\]

in (6.5), reducing it to the equation

\[
\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = \beta_1^2 + \beta_2^2 + \beta_3^2
\]

(6.7)

whose general form of integral solutions may be taken as

\[
\begin{align*}
\alpha_1 &= m^2 - n^2, & \alpha_2 &= 2mn, & \alpha_3 &= p^2 + q^2 \\
\beta_1 &= p^2 - q^2, & \beta_2 &= 2pq, & \beta_3 &= m^2 + n^2
\end{align*}
\]

wherein m, n, p and q are distinct non zero integers and thus, the solutions of (6.5) are given by

\[
\begin{align*}
x_1 &= -m^2 + n^2 + 2mn + p^2 + q^2 \\
x_2 &= m^2 - n^2 - 2mn + p^2 + q^2 \\
x_3 &= m^2 - n^2 + 2mn - p^2 - q^2 \\
x_4 &= -m^2 + n^2 - 2mn - (p^2 + q^2)
\end{align*}
\]

\[
\begin{align*}
y_1 &= -p^2 + q^2 + 2pq + m^2 + n^2 \\
y_2 &= p^2 - q^2 - 2pq + m^2 + n^2 \\
y_3 &= p^2 - q^2 + 2pq -(m^2 + n^2) \\
y_4 &= -p^2 + q^2 - 2pq - (m^2 + n^2)
\end{align*}
\]
Typical solutions are presented below:

\[

d_1 = 89, 33, -57, -65 \\
\begin{array}{c}
89 \\
33 \\
-57 \\
-65
\end{array}
\]

\[

d_2 = 91, -51, 29, -69
\]

\[

d_1 = 128, 72, -96, -104 \\
\begin{array}{c}
128 \\
72 \\
-96 \\
-104
\end{array}
\]

\[

d_2 = 144, -104, 48, -88
\]

\[

d_1 = 88, 60, -76, -72 \\
\begin{array}{c}
88 \\
60 \\
-76 \\
-72
\end{array}
\]

\[

d_2 = 104, -84, 36, -56
\]

\[

d_1 = 68, 54, -44, -78 \\
\begin{array}{c}
68 \\
54 \\
-44 \\
-78
\end{array}
\]

\[

d_2 = 84, -58, 36, -62
\]

\[

d_1 = 181, 147, -157, -171 \\
\begin{array}{c}
181 \\
147 \\
-157 \\
-171
\end{array}
\]

\[

d_2 = 209, -183, 111, -137
\]

\[

d_1 = 288, 162, -216, -234 \\
\begin{array}{c}
288 \\
162 \\
-216 \\
-234
\end{array}
\]

\[

d_2 = 324, -234, 108, -198
\]

\[

d_1 = 783, 491, -603, -671 \\
\begin{array}{c}
783 \\
491 \\
-603 \\
-671
\end{array}
\]

\[

d_2 = 939, -727, 237, -449
\]

\[

d_1 = 310, 126, -246, -190 \\
\begin{array}{c}
310 \\
126 \\
-246 \\
-190
\end{array}
\]

\[

d_2 = 370, -234, -6, -130
\]

\[

d_1 = 187, 153, -163, -177 \\
\begin{array}{c}
187 \\
153 \\
-163 \\
-177
\end{array}
\]

\[

d_2 = 239, -213, 69, -95
\]

\[

d_1 = 561, 355, -465, -451 \\
\begin{array}{c}
561 \\
355 \\
-465 \\
-451
\end{array}
\]

\[

d_2 = 635, -489, 249, -395
\]

\[

d_1 = 843, 185, -323, -705 \\
\begin{array}{c}
843 \\
185 \\
-323 \\
-705
\end{array}
\]

\[

d_2 = 843, -305, 177, -715
\]

\[

d_1 = 1021, 139, -301, -859 \\
\begin{array}{c}
1021 \\
139 \\
-301 \\
-859
\end{array}
\]

\[

d_2 = 1013, -275, 139, -877
\]

\[

d_1 = 1268, 262, -436, -1094 \\
\begin{array}{c}
1268 \\
262 \\
-436 \\
-1094
\end{array}
\]

\[

d_2 = 1298, -448, 214, -1064
\]
Alternatively, the general solution of (6.7) may be written as

\[\alpha_1 = pq, \quad \alpha_2 = rs, \quad \alpha_3 = ps + qr \]
\[\beta_1 = pq + rs, \quad \beta_2 = ps, \quad \beta_3 = rq \]

where \(p, q, r, s \) are arbitrary non zero integers and thus we now get the following parametric solutions of system (6.5)
\[
x_1 = -pq + ps + rs + rq \\
x_2 = pq + ps + rq - rs \\
x_3 = qp - qr - sp + sr \\
x_4 = -qp - qr - sp - sr
\]

\[
y_1 = qr - qp - sr + sp \\
y_2 = pq - ps + rs + rq \\
y_3 = pq + ps + rs - rq \\
y_4 = -qp - qr - ps - sr
\]

Typical examples are presented below:

\[
\begin{align*}
54, & \quad -10, \quad 16, \quad -60 \quad \overset{2}{=} \quad -16, \quad 46, \quad 30, \quad -60 \\
52, & \quad 4, \quad 8, \quad -64 \quad \overset{2}{=} \quad -8, \quad 28, \quad 44, \quad -64 \\
20, & \quad 0, \quad 4, \quad -24 \quad \overset{2}{=} \quad -4, \quad 16, \quad 12, \quad -24 \\
80, & \quad 0, \quad 16, \quad -96 \quad \overset{2}{=} \quad -16, \quad 64, \quad 48, \quad -96 \\
118, & \quad -30, \quad 42, \quad -130 \quad \overset{2}{=} \quad -42, \quad 90, \quad 82, \quad -130 \\
180, & \quad 0, \quad 36, \quad -216 \quad \overset{2}{=} \quad -36, \quad 144, \quad 108, \quad -216 \\
500, & \quad 0, \quad 100, \quad -600 \quad \overset{2}{=} \quad -100, \quad 400, \quad 300, \quad -600 \\
157, & \quad 7, \quad 25, \quad -189 \quad \overset{2}{=} \quad -25, \quad 137, \quad 77, \quad -189 \\
114, & \quad -28, \quad 40, \quad -126 \quad \overset{2}{=} \quad -40, \quad 82, \quad 84, \quad -126 \\
352, & \quad -42, \quad 90, \quad -400 \quad \overset{2}{=} \quad -90, \quad 298, \quad 192, \quad -400
\end{align*}
\]
Method of solving $x_1^2, x_2^2, x_3^2, x_4^2 = y_1^2, y_2^2, y_3^2, y_4^2$

To determine the solution set of system (6.5), wherein each member of the set is a perfect square, conjecture a solution of the 5th degree of the form

$$x_1, x_2, x_3, x_4, -x_1, -x_2, -x_3, -x_4 = y_1, y_2, y_3, y_4, -y_1, -y_2, -y_3, -y_4 \quad (6.8)$$
Assume a solution of (6.8) given by

\[(x_i) = (a, a+k, a+2k, b) \]
\[(y_i) = (k, 2k, 3k, b+2r) \] \hspace{1cm} (6.9)

This is equivalent to the system

(i) \[a^2 + (a+k)^2 + (a+2k)^2 + (b)^2 = k^2 + (2k)^2 + (3k)^2 + (b+2r)^2 \]

(ii) \[a^4 + (a+k)^4 + (a+2k)^4 + (b)^4 = k^4 + (2k)^4 + (3k)^4 + (b+2r)^4 \] \hspace{1cm} (6.10)

In consequence of (6.10(i)), we may write

\[a^2 + 2ak - 3k^2 = \frac{4}{3} rM, \]

where \(b = M-r \). \hspace{1cm} (6.11)

Solving (6.11) as a quadratic in ‘\(a \)’, we get

\[a + k = 2 \sqrt{k^2 + M \left(\frac{r}{3} \right)} \] \hspace{1cm} (6.12)

Then (6.10(ii)) reduces to

\[3M^2 - 2Mr + 3r^2 = 18k^2, \] \hspace{1cm} (6.13)

a solution of which is

\[M = 36mn + 3m^2 - 54n^2 \]
\[r = 36mn - 3m^2 + 54n^2 \]
\[k = 2m^2 + 36n^2 \] \hspace{1cm} (6.14)
Using (6.11) and (6.12), we get

\[a = - \left(2m^2 + 36n^2\right) \pm 2\sqrt{648m^2n^2 + (m^2 + 18n^2)^2} \]

\[b = 6(m^2 - 18n^2) \]

Since our interest centers on finding integral solutions of system (6.8), choose \(m \) and \(n \) so that the value of \('a' \) is an integer. Thus, knowing the integer values of \(a, k, b \) and \(r \), the solution set of the system

\[x_1^2, x_2^2, x_3^2, x_4^2 = y_1^2, y_2^2, y_3^2, y_4^2 \] (6.15)

readily follows. For example, we present below two different choices of \(m \) and \(n \) so that the values of \('a' \) are integers and the corresponding solutions of equation (6.15).

Table (6c(i))

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(2\alpha)</td>
<td>(32\alpha^2)</td>
<td>(178\alpha^2)</td>
<td>(324\alpha^2)</td>
<td>(-426\alpha^2)</td>
</tr>
<tr>
<td>(3\alpha + 3)</td>
<td>(\alpha + 1)</td>
<td>(108(\alpha + 1)^2)</td>
<td>(162(\alpha + 1)^2)</td>
<td>(216(\alpha + 1)^2)</td>
<td>(-54(\alpha + 1)^2)</td>
</tr>
<tr>
<td>(12\alpha)</td>
<td>(2\alpha)</td>
<td>(864\alpha^2)</td>
<td>(1296\alpha^2)</td>
<td>(1728\alpha^2)</td>
<td>(432\alpha^2)</td>
</tr>
<tr>
<td>(36\alpha)</td>
<td>(\alpha)</td>
<td>(576\alpha^2)</td>
<td>(3204\alpha^2)</td>
<td>(5832\alpha^2)</td>
<td>(7668\alpha^2)</td>
</tr>
</tbody>
</table>
\[\begin{array}{cccccc}
\text{m} & \text{n} & y_1 & y_2 & y_3 & y_4 \\
\alpha & 2\alpha & 146\alpha^2 & 292\alpha^2 & 438\alpha^2 & 144\alpha^2 \\
3\alpha+3 & \alpha+1 & 54(\alpha+1)^2 & 108(\alpha+1)^2 & 162(\alpha+1)^2 & 216(\alpha+1)^2 \\
12\alpha & 2\alpha & 432\alpha^2 & 864\alpha^2 & 1296\alpha^2 & 1728\alpha^2 \\
36\alpha & \alpha & 2628\alpha^2 & 5256\alpha^2 & 7884\alpha^2 & 2592\alpha^2 \\
\end{array} \]

Deductions:

Observe that the system (6.15) leads to the equation

\[
\sum_{i,j=1}^{4} x_i^2 x_j^2 = \sum_{i,j=1}^{4} y_i^2 y_j^2
\]

(6.16)

Equations (6.15) and (6.16) are equivalent to

\[
x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1^2 + x_2^2 + x_3^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + \frac{2}{2} y_1^2 + y_2^2 + y_3^2 + y_4^2 + y_5^2 + y_6^2 + y_7^2 + y_8^2 + y_9^2 + y_{10}^2 + \cdots
\]

\[
y_1^2 + y_2^2 + y_3^2 + y_4^2 + y_5^2 + y_6^2 + y_7^2 + y_8^2 + y_9^2 + y_{10}^2
\]

Now, it is seen that

\[
\begin{align*}
(x_1^2 + x_2^2)^6 + (x_3^2 + x_4^2)^6 + (x_5^2 + x_6^2)^6 + (x_7^2 + x_8^2)^6 + (x_9^2 + x_10^2)^6 \\
= 3(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 + x_9^2 + x_{10}^2)
\end{align*}
\]
In a similar manner, we observe that

\[
(y_1^2 + y_2^2)^3 + (y_3^2 + y_4^2)^3 + (y_5^2 + y_6^2)^3 + (y_7^2 + y_8^2)^3 + (y_9^2 + y_{10}^2)^3 = 3(y_1^2 + y_2^2 + y_3^2 + y_4^2)
\]

In view of (6.15), we have

\[
(x_1^2 + x_2^2)^3 + (x_3^2 + x_4^2)^3 + (x_5^2 + x_6^2)^3 + (x_7^2 + x_8^2)^3 + (x_9^2 + x_{10}^2)^3 = (y_1^2 + y_2^2)^3 + (y_3^2 + y_4^2)^3
\]

\[+ (y_5^2 + y_6^2)^3 + (y_7^2 + y_8^2)^3 + (y_9^2 + y_{10}^2)^3 \]

Thus, we arrive at the following (3,10) multigrade Diophantine equation

\[
a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10} = b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}
\]

where

\[
a = (x_1^2 + x_2^2, x_3^2 + x_4^2, x_5^2 + x_6^2, x_7^2 + x_8^2, x_9^2 + x_{10}^2, x_1^2 + x_3^2, x_5^2 + x_7^2, x_9^2)
\]

\[
b = (y_1^2 + y_2^2, y_3^2 + y_4^2, y_5^2 + y_6^2, y_7^2 + y_8^2, y_9^2 + y_{10}^2, y_1^2 + y_3^2, y_5^2 + y_7^2, y_9^2)
\]

A few examples are presented in the following Table (6d).
Table (6d(i))

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(2\alpha)</td>
<td>32708 (\alpha^4)</td>
<td>136660 (\alpha^4)</td>
<td>106000 (\alpha^4)</td>
<td>213160 (\alpha^4)</td>
<td>286452 (\alpha^4)</td>
</tr>
<tr>
<td>3 (\alpha) + 1</td>
<td>(\alpha + 1)</td>
<td>37908 ((\alpha + 1)^4)</td>
<td>72900 ((\alpha + 1)^4)</td>
<td>49572 ((\alpha + 1)^4)</td>
<td>14580 ((\alpha + 1)^4)</td>
<td>29160 ((\alpha + 1)^4)</td>
</tr>
<tr>
<td>12 (\alpha)</td>
<td>(2\alpha)</td>
<td>2426112 (\alpha^4)</td>
<td>4665600 (\alpha^4)</td>
<td>3172608 (\alpha^4)</td>
<td>933120 (\alpha^4)</td>
<td>1866240 (\alpha^4)</td>
</tr>
<tr>
<td>36 (\alpha)</td>
<td>(\alpha)</td>
<td>10597392 (\alpha^4)</td>
<td>44277840 (\alpha^4)</td>
<td>34344000 (\alpha^4)</td>
<td>69063840 (\alpha^4)</td>
<td>92810448 (\alpha^4)</td>
</tr>
</tbody>
</table>

Table (6d(ii))

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>(a_6)</th>
<th>(a_7)</th>
<th>(a_8)</th>
<th>(a_9)</th>
<th>(a_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(2\alpha)</td>
<td>182500 (\alpha^4)</td>
<td>1024 (\alpha^4)</td>
<td>31684 (\alpha^4)</td>
<td>104976 (\alpha^4)</td>
<td>181476 (\alpha^4)</td>
</tr>
<tr>
<td>3 (\alpha) + 1</td>
<td>(\alpha + 1)</td>
<td>58320 ((\alpha + 1)^4)</td>
<td>11664 ((\alpha + 1)^4)</td>
<td>26244 ((\alpha + 1)^4)</td>
<td>46656 ((\alpha + 1)^4)</td>
<td>2916 ((\alpha + 1)^4)</td>
</tr>
<tr>
<td>12 (\alpha)</td>
<td>(2\alpha)</td>
<td>3732480 (\alpha^4)</td>
<td>746496 (\alpha^4)</td>
<td>1679616 (\alpha^4)</td>
<td>2985984 (\alpha^4)</td>
<td>186624 (\alpha^4)</td>
</tr>
<tr>
<td>36 (\alpha)</td>
<td>(\alpha)</td>
<td>59130000 (\alpha^4)</td>
<td>331776 (\alpha^4)</td>
<td>10265616 (\alpha^4)</td>
<td>34012224 (\alpha^4)</td>
<td>58798224 (\alpha^4)</td>
</tr>
</tbody>
</table>
Table (6d(iii))

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2α</td>
<td>106580α^4</td>
<td>277108α^4</td>
<td>213160α^4</td>
<td>106000α^4</td>
<td>42052α^4</td>
</tr>
<tr>
<td>3$\alpha+3$</td>
<td>$\alpha+1$</td>
<td>14580($\alpha+1)^3$</td>
<td>37908($\alpha+1)^3$</td>
<td>72900($\alpha+1)^3$</td>
<td>49572($\alpha+1)^3$</td>
<td>58320($\alpha+1)^3$</td>
</tr>
<tr>
<td>12α</td>
<td>2α</td>
<td>933120α^4</td>
<td>2426112α^4</td>
<td>4665600α^4</td>
<td>3172608α^4</td>
<td>3732480α^4</td>
</tr>
<tr>
<td>36α</td>
<td>α</td>
<td>34531920α^4</td>
<td>89782992α^4</td>
<td>69063840α^4</td>
<td>34344000α^4</td>
<td>13624848α^4</td>
</tr>
</tbody>
</table>

Table (6d(iv))

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>b_6</th>
<th>b_7</th>
<th>b_8</th>
<th>b_9</th>
<th>b_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2α</td>
<td>212580α^4</td>
<td>21316α^4</td>
<td>85264α^4</td>
<td>191844α^4</td>
<td>20736α^4</td>
</tr>
<tr>
<td>3$\alpha+3$</td>
<td>$\alpha+1$</td>
<td>29160($\alpha+1)^3$</td>
<td>2916($\alpha+1)^3$</td>
<td>11664($\alpha+1)^3$</td>
<td>26244($\alpha+1)^3$</td>
<td>46656($\alpha+1)^3$</td>
</tr>
<tr>
<td>12α</td>
<td>2α</td>
<td>1866240α^4</td>
<td>186624α^4</td>
<td>744046α^4</td>
<td>1679616α^4</td>
<td>2985984α^4</td>
</tr>
<tr>
<td>36α</td>
<td>α</td>
<td>68875920α^4</td>
<td>6906384α^4</td>
<td>27625536α^4</td>
<td>62157456α^4</td>
<td>6718464α^4</td>
</tr>
</tbody>
</table>
Also (6.15) and (6.16) are equivalent to

\[\frac{-x_i^2 + x_j^2 + x_k^2 + x_l^2}{2}, \frac{x_i^2 - x_j^2 + x_k^2 + x_l^2}{2}, \frac{x_i^2 + x_j^2 - x_k^2 + x_l^2}{2}, \frac{x_i^2 + x_j^2 + x_k^2 - x_l^2}{2}, x_i^2, x_j^2, x_k^2, x_l^2 = \]

\[\frac{-y_i^2 + y_j^2 + y_k^2 + y_l^2}{2}, \frac{y_i^2 - y_j^2 + y_k^2 + y_l^2}{2}, \frac{y_i^2 + y_j^2 - y_k^2 + y_l^2}{2}, \frac{y_i^2 + y_j^2 + y_k^2 - y_l^2}{2}, y_i^2, y_j^2, y_k^2, y_l^2 \]

Now, it is seen that

\[\left(\frac{-x_i^2 + x_j^2 + x_k^2 + x_l^2}{2} \right)^3 + \left(\frac{x_i^2 - x_j^2 + x_k^2 + x_l^2}{2} \right)^3 + \left(\frac{x_i^2 + x_j^2 - x_k^2 + x_l^2}{2} \right)^3 + \left(\frac{x_i^2 + x_j^2 + x_k^2 - x_l^2}{2} \right)^3 + \]

\[(x_i^2 + x_j^2 + x_k^2 + x_l^2) = -3(x_i^2 + x_j^2 + x_k^2 + x_l^2)(x_i^2 + x_j^2 + x_k^2 + x_l^2)(x_i^2 + x_j^2 + x_k^2 + x_l^2)(x_i^2 + x_j^2 + x_k^2 + x_l^2) + \]

\[(x_i^2 + x_j^2 + x_k^2 + x_l^2)^3 + 2 \left(\frac{x_i^2 + x_j^2 + x_k^2 + x_l^2}{2} \right)^3 \]

In a similar manner we observe that

\[\left(\frac{-y_i^2 + y_j^2 + y_k^2 + y_l^2}{2} \right)^3 + \left(\frac{y_i^2 - y_j^2 + y_k^2 + y_l^2}{2} \right)^3 + \left(\frac{y_i^2 + y_j^2 - y_k^2 + y_l^2}{2} \right)^3 + \left(\frac{y_i^2 + y_j^2 + y_k^2 - y_l^2}{2} \right)^3 + \]

\[(y_i^2 + y_j^2 + y_k^2 + y_l^2) = -3(y_i^2 + y_j^2 + y_k^2 + y_l^2)(y_i^2 + y_j^2 + y_k^2 + y_l^2)(y_i^2 + y_j^2 + y_k^2 + y_l^2)(y_i^2 + y_j^2 + y_k^2 + y_l^2) \]

\[+ (y_i^2 + y_j^2 + y_k^2 + y_l^2)^3 + 2 \left(\frac{y_i^2 + y_j^2 + y_k^2 + y_l^2}{2} \right)^3 \]
In view of (6.15), we have

\[
\left(-\frac{x_1^2 + x_2^2 + x_3^2 + x_4^2}{2} \right)^3 + \left(-\frac{x_1^2 - x_2^2 + x_3^2 + x_4^2}{2} \right)^3 + \left(-\frac{x_1^2 + x_2^2 - x_3^2 + x_4^2}{2} \right)^3 = \\
\left(-\frac{y_1^2 + y_2^2 + y_3^2 + y_4^2}{2} \right)^3 + \left(-\frac{y_1^2 - y_2^2 + y_3^2 + y_4^2}{2} \right)^3 + \left(-\frac{y_1^2 + y_2^2 - y_3^2 + y_4^2}{2} \right)^3
\]

Thus, we arrive at the following (3,8) multigrade Diophantine equation

\[
a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 = b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8
\]

where

\[
a_i = \left(-\frac{x_1^2 + x_2^2 + x_3^2 + x_4^2}{2}, -\frac{x_1^2 - x_2^2 + x_3^2 + x_4^2}{2}, -\frac{x_1^2 + x_2^2 - x_3^2 + x_4^2}{2}, \frac{x_1^2 + x_2^2 + x_3^2 - x_4^2}{2}, x_1, x_2, x_3, x_4 \right)
\]

\[
b_i = \left(-\frac{y_1^2 + y_2^2 + y_3^2 + y_4^2}{2}, -\frac{y_1^2 - y_2^2 + y_3^2 + y_4^2}{2}, -\frac{y_1^2 + y_2^2 - y_3^2 + y_4^2}{2}, \frac{y_1^2 + y_2^2 + y_3^2 - y_4^2}{2}, y_1, y_2, y_3, y_4 \right)
\]
\textbf{Table (6e(i))}

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2α</td>
<td>$158556\alpha^4$</td>
<td>$127896\alpha^4$</td>
<td>$54604\alpha^4$</td>
<td>$-21896\alpha^4$</td>
</tr>
<tr>
<td>$3\alpha + 3$</td>
<td>$\alpha + 1$</td>
<td>$32076(\alpha + 1)^4$</td>
<td>$17496(\alpha + 1)^4$</td>
<td>$-2916(\alpha + 1)^4$</td>
<td>$40824(\alpha + 1)^4$</td>
</tr>
<tr>
<td>12α</td>
<td>2α</td>
<td>$2052864\alpha^4$</td>
<td>$1119744\alpha^4$</td>
<td>$-186624\alpha^4$</td>
<td>$2612736\alpha^4$</td>
</tr>
<tr>
<td>36α</td>
<td>α</td>
<td>$51372144\alpha^4$</td>
<td>$41438304\alpha^4$</td>
<td>$17691696\alpha^4$</td>
<td>$-7094304\alpha^4$</td>
</tr>
</tbody>
</table>

\textbf{Table (6e(ii))}

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2α</td>
<td>$1024\alpha^4$</td>
<td>$31684\alpha^4$</td>
<td>$104976\alpha^4$</td>
<td>$181476\alpha^4$</td>
</tr>
<tr>
<td>$3\alpha + 3$</td>
<td>$\alpha + 1$</td>
<td>$11664(\alpha + 1)^4$</td>
<td>$26244(\alpha + 1)^4$</td>
<td>$46656(\alpha + 1)^4$</td>
<td>$2916(\alpha + 1)^4$</td>
</tr>
<tr>
<td>12α</td>
<td>2α</td>
<td>$746496\alpha^4$</td>
<td>$1679616\alpha^4$</td>
<td>$2985984\alpha^4$</td>
<td>$186624\alpha^4$</td>
</tr>
<tr>
<td>36α</td>
<td>α</td>
<td>$331776\alpha^4$</td>
<td>$10265616\alpha^4$</td>
<td>$34012224\alpha^4$</td>
<td>$58798224\alpha^4$</td>
</tr>
</tbody>
</table>
Table 6e(iii)

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2α</td>
<td>$138264\alpha^4$</td>
<td>$74316\alpha^4$</td>
<td>$-32264\alpha^4$</td>
<td>$138844\alpha^4$</td>
</tr>
<tr>
<td>$3\alpha+3$</td>
<td>$\alpha+1$</td>
<td>$40824(\alpha+1)^4$</td>
<td>$32076(\alpha+1)^4$</td>
<td>$17496(\alpha+1)^4$</td>
<td>$-2916(\alpha+1)^4$</td>
</tr>
<tr>
<td>12α</td>
<td>2α</td>
<td>$2612736\alpha^4$</td>
<td>$2052864\alpha^4$</td>
<td>$1119744\alpha^4$</td>
<td>$-186624\alpha^4$</td>
</tr>
<tr>
<td>36α</td>
<td>α</td>
<td>$44797536\alpha^4$</td>
<td>$24078384\alpha^4$</td>
<td>$-10453536\alpha^4$</td>
<td>$44985456\alpha^4$</td>
</tr>
</tbody>
</table>

Table 6e(iv)

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>b_5</th>
<th>b_6</th>
<th>b_7</th>
<th>b_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2α</td>
<td>$21316\alpha^4$</td>
<td>$85264\alpha^4$</td>
<td>$191844\alpha^4$</td>
<td>$20736\alpha^4$</td>
</tr>
<tr>
<td>$3\alpha+3$</td>
<td>$\alpha+1$</td>
<td>$2916(\alpha+1)^4$</td>
<td>$11664(\alpha+1)^4$</td>
<td>$26244(\alpha+1)^4$</td>
<td>$46656(\alpha+1)^4$</td>
</tr>
<tr>
<td>12α</td>
<td>2α</td>
<td>$186624\alpha^4$</td>
<td>$746496\alpha^4$</td>
<td>$1679616\alpha^4$</td>
<td>$2985984\alpha^4$</td>
</tr>
<tr>
<td>36α</td>
<td>α</td>
<td>$6906384\alpha^4$</td>
<td>$27625536\alpha^4$</td>
<td>$62157456\alpha^4$</td>
<td>$6718464\alpha^3$</td>
</tr>
</tbody>
</table>