REFERENCES


Dohnalkova, A., Grate, J. W., Wang, P., Hyeon, T., Park, H.G. and
Chang, H.N. “Crosslinked enzyme aggregates in hierarchically-ordered
mesoporous silica: A simple and effective method for enzyme

and Chang, H. N. “One dimensional crosslinked enzyme aggregates in
SBA-15: Catalytic behavior to conventional enzyme immobilization”,

112. Kim, S., Ida, J., Guliants, V.V. and Lin, J.Y.S. “Tailoring pore

113. Kisler, J.M., Stevens, G.W. and O’Connor, A.J. “Adsorption of
proteins on mesoporous molecular sieves”, Mater. Phys. Mech., Vol. 4,

114. Krajewska, B. “Application of chitin- and chitosan-based materials for
enzyme immobilizations: a review”. Enzyme Microb. Technol.,

115. Krenkova, J. and Foret, F. “Im mobilized microfluidic enzymatic

“Ordered mesoporous molecular sieves synthesized by a liquid-crystal

117. Kumar, C.V. and McLendon, G.L. “Nanoencapsulation of cytochrome c
and horseradish peroxidase at the galleries of a-zirconium phosphate”,

118. Kyoto Protocol, “The united nations framework convention on climate
change”, 2004.

“Enhancing stability and oxidation activity of cytochrome c by
immobilization in the nanochannels of mesoporous aluminosilicates”,


189. Sayari, A. and Hamoudi, S. “Periodic mesoporous silica-based organic-


