5.1 Introduction

Organic-inorganic type composite materials is the latest work of interest in different laboratories for various applications [1-5], owing to their better thermal, chemical and radiation stabilities compared to organic as well as inorganic materials. Particularly, the applications of composite materials as ion exchangers have been of great interest in our laboratory in view of increasing environmental pollution concern [6-14]. Generally, these composite ion exchange materials have been developed by combination of insulating or conducting organic polymers as supporting materials and inorganic precipitates of polyvalent metal acid salt precursors by sol-gel method. Pristine inorganic ion exchangers and organic resins, for ion exchange applications have been of limited interest due to chemical and thermal stabilities, respectively. Furthermore, inorganic ion exchangers are reported to be not very much reproducible and granular thereby limiting their suitability for column operation. To overcome the limitation of pristine ion exchangers of organic and inorganic in nature, the organic polymer carboxymethyl cellulose was incorporated into the matrices of inorganic ion exchanger Sn(IV) phosphate leading to the formation of a new composite carboxymethyl cellulose Sn(IV) phosphate nano rod like cation ion exchanger with better chemical, thermal, mechanical, granulometric and ion exchange properties [15]. Due to the enhanced properties of composite materials researchers has been motivated to have various applications of organic-inorganic composite ion-exchangers in analytical and environmental chemistry [16-37]. New applications of composite materials have been explored in the fields of heterogeneous catalysis [38,39], protective coatings [40], solid polymer electrolyte membrane fuel cells [41,42], ion selective membrane electrodes [37,43], gas perm-selectivity [44,45], ion transport [46,47], and ion exchange [48]. In most of these fields, information related to the ion exchange kinetics and the mobility of counter ions in the lattice structure is needed. Kinetics studies envisage the three aspects of ion exchange process viz the mechanism of ion exchange, rate determining step and the rate laws obeyed by the ion exchange system. Moreover, the earlier approaches [49-52], of kinetic behavior are based on the
old $Bt$ criterion [53,54], which is not very useful for a true ion-exchange (non-isotopic exchange) process because of the different effective diffusion coefficients and different mobilities [55], of the exchanging ions involved. The Nernst-Planck [56,57], equations with some additional assumptions provide more appropriate values in obtaining the values of the various kinetic parameters precisely. Though many studies on the kinetics of ion exchange on organic and inorganic ion exchangers have been reported [58-61], relatively less information exists on the kinetics of exchange on composite ion exchange materials. Hence, in this study carboxymethyl cellulose Sn(IV) phosphate nano-rod like composite cation-exchanger was selected to evaluate the ion-exchange mechanism occurring over the surface of the cation-exchanger. However, the synthesis, physico-chemical characterization and thermodynamic study for the adsorption of pyridine of this composite cation exchanger have also been studied and results are published [15].

**List of abbreviation used**

<table>
<thead>
<tr>
<th>Abbreviation used</th>
<th>Full form</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(\tau)$</td>
<td>Fractional attainment of equilibrium</td>
</tr>
<tr>
<td>$D_o$</td>
<td>Self diffusion coefficients</td>
</tr>
<tr>
<td>$E_a$</td>
<td>Energy of activation</td>
</tr>
<tr>
<td>$\Delta S^*$</td>
<td>Entropy of activation</td>
</tr>
<tr>
<td>$C_{19}H_{42}BrN$ (CTAB)</td>
<td>N-Cetyl-N,N,N-trimethyl ammonium bromide</td>
</tr>
<tr>
<td>$C_3H_5N$</td>
<td>Pyridine</td>
</tr>
<tr>
<td>DMW</td>
<td>Demineralize water</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>$\bar{D}_{H^+}$</td>
<td>Inter diffusion coefficients of counter ion $H^+$</td>
</tr>
<tr>
<td>$\bar{D}_{M^{2+}}$</td>
<td>Inter diffusion coefficients of counter ion $M^{2+}$</td>
</tr>
<tr>
<td>$r_o$</td>
<td>Particle radius</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>Mobility ratio</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>$Z_{H^+}/Z_{M^{2+}}$</td>
<td>Charge ratio</td>
</tr>
<tr>
<td>$\tau$</td>
<td>A dimensionless time parameter</td>
</tr>
<tr>
<td>$H^+$</td>
<td>Hydrogen ion</td>
</tr>
<tr>
<td>$M^{2+}$</td>
<td>Metal ion</td>
</tr>
<tr>
<td>$S$</td>
<td>Slope</td>
</tr>
<tr>
<td>$D$</td>
<td>The ionic jump distance</td>
</tr>
<tr>
<td>i.d.</td>
<td>Internal diameter</td>
</tr>
<tr>
<td>$K$</td>
<td>The Boltzmann constant</td>
</tr>
<tr>
<td>$R$</td>
<td>The gas constant</td>
</tr>
<tr>
<td>$H$</td>
<td>Plank’s constant</td>
</tr>
<tr>
<td>$T$</td>
<td>Temperature</td>
</tr>
</tbody>
</table>

5.2 Experimental

5.2.1 Reagents and instruments

The main reagents viz stannic chloride, SnCl$_4$$\cdot$5H$_2$O (95%), carboxymethyl cellulose sodium salt, tri-sodium orthophosphate dodecahydrate, Na$_3$PO$_4$$\cdot$12H$_2$O (98%) and N-Cetyl-N,N,N-trimethyl ammonium bromide, C$_{19}$H$_{42}$BrN (CTAB) (99%) used for the synthesis of the composite nano-rod like cation exchange material were obtained from Central Drug House (CDH) Pvt. Ltd., India. Pyridine, C$_5$H$_5$N (99%), nitric acid, HNO$_3$ (35%) and hydrochloric acid, HCl (35%) were obtained from E. Merck, India. Solutions for kinetic measurement were made using analytical reagent grade nitrate salts of Ni, Cu, Mn and Zn (99%) obtained from Central Drug House Pvt. Ltd. India. The other reagents and chemicals used were of analytical reagent grade and used as received. A digital pH meter (Elico LI-10, India) to adjust the pH and a water bath incubator shaker for all equilibrium studies having a temperature variation of ± 0.5 °C (MSW-275, India) were used.
5.2.2 Preparation of organic-inorganic composite cation-exchange material

Organic-inorganic composite cation exchanger carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchange material was prepared as reported by Ali Mohammad et al. [15]. The procedure for the preparation is given below:

5.2.2.1. Preparation of reagent solutions

The solutions of 0.1 M stannic chloride (SnCl₄·5H₂O) was prepared in 4 M HCl while 0.1 M tri-sodium orthophosphate (Na₃PO₄·12H₂O), N-cetyl-N,N,N trimethyl ammonium bromide (CTAB) and carboxymethyl cellulose sodium salt (CMC) solutions were prepared in demineralize water (DMW), respectively.

5.2.2.2. Preparation of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchange material

Sn(IV) phosphate was prepared by mixing 0.1 M stannic chloride solution with aqueous solution of 0.1 M tri-sodium orthophosphate in 1:2 (V/V) ratios at room temperature (25±2 °C). White precipitate was obtained, when pH of the solution was adjusted to 1 by adding aqueous ammonia/hydrochloric acid with constant stirring. 5 ml of CTAB was added to the precipitate of Sn(IV) phosphate and stirred for 10 min. Finally, 2 g of carboxymethyl cellulose sodium salt dissolved in 45 ml of demineralised water (DMW) was added to the precipitate of Sn(IV) phosphate, stirred for 2 h and finally kept for 24 h at room temperature (25±2 °C) for digestion. The gels of Sn(IV) phosphate and carboxymethyl cellulose Sn(IV) phosphate composite cation exchanger were filtered off by suction; washed with DMW to remove excess acid. The washed gel was dried over P₂O₁₀ at 40 °C in an oven. The dried product was washed again with acetone to remove impurities present in the material, and dried at 40 °C in an oven. The composite nano-rod like cation exchanger carries fixed phosphate ionic groups which are converted into H⁺/counter ion form by treating with 1 M HNO₃ for 24 h with occasional shaking and intermittently replacing the supernatant liquid with fresh acid 2 to 3 times. The excess acid was removed after several washings with DMW and finally dried at 50 °C. The composite nano-rod like
cation exchanger was cracked and the particle size of approximately 125 μm was obtained by sieving and stored in desiccator. The ion exchange capacity was determined by standard column process. For this purpose, one gram (1g) of the dry cation-exchanger samples in the H⁺-forms were taken into different glass columns having an internal diameter (i.d.) ~1 cm and fitted with glass wool support at the bottom. The bed length was approximately 1.5 cm long. 1 M NaNO₃ as eluent was used to elute the H⁺ ions completely from the cation-exchange columns, maintaining a very slow flow rate (~0.5 ml min⁻¹). The effluents were titrated against a standard 0.1 M NaOH solution for the total ions liberated in the solutions using phenolphthalein indicator and the ion-exchange capacities in meq dry g⁻¹ are determined. The conditions of the preparation, the ion-exchange capacities, and the physical appearances of the inorganic and composite cation-exchanger are given in Table 5.1. The ion exchange capacity of composite nano-rod like cation exchanger carboxymethyl cellulose Sn(IV) phosphate was found to be 2.13 meq dry g⁻¹, which is higher than inorganic counterpart Sn(IV) phosphate ion exchange capacity of 1.2 meq dry g⁻¹. Thus, sample S-2 was selected for detailed kinetic studies.

5.2.3 Kinetic measurements

Composite cation exchanger particles of mean radii ~125 μm (50-70 mesh) in H⁺ form were used to evaluate various kinetic parameters. The rate of exchange was determined by limited batch technique as follows:

A total of twenty-milliliter fractions of the 0.03 M metal ion solutions (Ni, Cu, Mn and Zn) were shaken with 200 mg of the cation-exchanger in H⁺-form in several stoppered conical flasks at desired temperatures [25, 35, 50 and 65 (± 0.5) °C] for different time intervals (1.0, 2.0, 3.0, 4.0 and 25 min). The supernatant liquid was removed immediately and determinations were made as usual by ethylene diamine tetra acetic acid (EDTA) titrations [62]. Each set was repeated four times and the mean values were taken for calculation.

5.3 Results and Discussions

Sol-gel method was used to prepare carboxymethyl cellulose Sn(IV) phosphate composite cation exchanger (Table 5.1). Composite ion exchange material possessed higher Na⁺ ion exchange capacity of 2.13 meq dry g⁻¹ as compared to that
of inorganic counterpart (1.20 meq dry g\(^{-1}\)). Composite cation exchange particles of mean radii ~125 µm (50-70 mesh) in H\(^+\) form were used to study the kinetic behavior of heavy metal ions viz. Ni\(^{2+}\)-H\(^+\), Cu\(^{2+}\)-H\(^+\), Mn\(^{2+}\)-H\(^+\) and Zn\(^{2+}\)-H\(^+\). The rate determining step in ion exchange process may be either particle diffusion or film diffusion. Approximated Nernst-Planck equations are used to predict whether particle or film diffusion will be rate controlling step under a given set of conditions. The infinite time of exchange is the time required to accomplish the equilibrium. Thus, the rate of exchange for metal ions becomes independent of time after this time interval. 

**Figure 5.1** showed that equilibrium for Mg\(^{2+}\)-H\(^+\) exchange at 35 °C was accomplished within 20 min. Similar behavior was also observed for Ni\(^{2+}\)-H\(^+\), Cu\(^{2+}\)-H\(^+\), Mn\(^{2+}\)-H\(^+\) and Zn\(^{2+}\)-H\(^+\) exchanges. Therefore, 20 min. was assumed to be the infinite time of exchange for all exchange systems. A study of the concentration effect on the rate of exchange at 35 °C showed that the initial rate of exchange was proportional to the metal ion concentration and \(\tau\) versus time (\(t\) (\(t\) in min)) plots are also straight lines passing through the origin at and above 0.03 M of metal ion concentration (data not shown), which confirms the particle diffusion controlled phenomenon. Below the metal ion concentration of 0.03 M, film diffusion control phenomenon was more prominent.

Thus, kinetic measurements were achieved under particle diffusion-controlled ion-exchange phenomenon for the exchanges of Ni\(^{2+}\)-H\(^+\), Cu\(^{2+}\)-H\(^+\), Mn\(^{2+}\)-H\(^+\) and Zn\(^{2+}\)-H\(^+\). The kinetic results are expressed in terms of the fractional attainment of equilibrium, \(U(\tau)\) with time according to the equation:

\[
U(\tau) = \frac{\text{the amount of exchange at time } \tau'}{\text{the amount of exchange at infinite time}} \quad (1)
\]

Plots of \(U(\tau)\) versus time (\(t\) (\(t\) in min.), for Ni\(^{2+}\)-H\(^+\), Cu\(^{2+}\)-H\(^+\), Mn\(^{2+}\)-H\(^+\) and Zn\(^{2+}\)-H\(^+\) exchanges (Figure 5.2) showed that the fractional attainment of equilibrium was faster at a higher temperature suggesting that the mobility of the ions increased with an increase in temperature.

Each value of \(U(\tau)\) will have a corresponding value of \(\tau\), a dimensionless time parameter. The numerical results for the calculation of \(\tau\) can be expressed by Nernst-Planck explicit approximation [63-65]:

\[
U(\tau) = \{ 1 - \exp [\pi^2 (f_1(\alpha) \tau + f_2(\alpha) \tau^2 + f_3(\alpha) \tau^3)]\}^{1/2} \quad (2)
\]
where \( \tau \) is the half time of exchange = \( \overline{D_{H^+}}t / r_0^2 \), \( \alpha \) is the mobility ratio = \( \overline{D_{H^+}} / \overline{D_{M^{2+}}} \), \( r_0 \) is the particle radius, \( \overline{D_{H^+}} \) and \( \overline{D_{M^{2+}}} \) are the inter diffusion coefficients of counter ions \( H^+ \) and \( M^{2+} \) respectively, in the exchanger phase. The three functions \( f_1(\alpha), f_2(\alpha) \) and \( f_3(\alpha) \) depend upon the mobility ratio (\( \alpha \)) and the charge ratio (\( Z_{H^+} / Z_{M^{2+}} \)) of the exchanging ions. Thus, they have different expressions as given below. When the exchanger is taken in the \( H^+ \)-form and the exchanging ion is \( M^{2+} \), for \( 1 \leq \alpha \leq 20 \), as in the present case, the three functions have the values-

\[
\begin{align*}
  f_1(\alpha) &= -\frac{1}{0.64 + 0.36\alpha^{0.668}} \\
  f_2(\alpha) &= -\frac{1}{0.96 - 2.0\alpha^{0.4635}} \\
  f_3(\alpha) &= -\frac{1}{0.27 + 0.09\alpha^{1.140}}
\end{align*}
\]

The value of \( \tau \) was obtained on solving equation (2) using a computer. The plots of \( \tau \) versus time (t) at four different temperatures for \( \text{Ni}^{2+}-H^+ \), \( \text{Cu}^{2+}-H^+ \), \( \text{Mn}^{2+}-H^+ \) and \( \text{Zn}^{2+}-H^+ \) exchanges are shown in Figure 5.3, are straight lines passing through the origin, confirming the particle diffusion control phenomenon for \( M^{2+}-H^+ \) exchanges at a metal ion concentration of 0.03 M. It is obvious that the particle diffusion controlled exchange is more rapid when the counter ion which is initially in the ion exchanger is the faster one, while for the film diffusion controlled exchange, the counter ion which is preferred by the ion exchanger is taken up at the higher rate and released at the lower rate.

The slopes (\( S \) values) of various \( \tau \) versus time (t) plots are given in Table 5.2. The \( S \) values are related to \( \overline{D_{H^+}} \) as follows:

\[
S = \frac{\overline{D_{H^+}}}{r_0^2}
\tag{3}
\]

The values of \(-\log \overline{D_{H^+}}\) obtained by using equation (3) plotted against \( 1/T \) are straight lines as shown in Figure 5.4, thus verifying the validity of the Arrhenius relation:
\[ \overline{D}_{H^+} = D_0 \exp \left( -\frac{E_a}{RT} \right) \tag{4} \]

\( D_0 \) is obtained by extrapolating these lines and using the intercepts at the origin. The activation energy \( (E_a) \) is then calculated with the help of the equation (4), putting the value of \( \overline{D}_{H^+} \) at 273 K. The entropy of activation \( (\Delta S^*) \) was then calculated by substituting \( D_0 \) in equation (5).

\[ D_0 = 2.72d^2 \left( \frac{kT}{h} \right) \exp(\Delta S^*/R) \tag{5} \]

where \( d \) is the ionic jump distance taken as \( 5 \times 10^{-10} \) m, \( k \) is the Boltzmann constant, \( R \) is the gas constant, \( h \) is Planck’s constant and \( T \) is taken as 273 K. The values of the diffusion coefficient \( (D_0) \), energy of activation \( (E_a) \) and entropy of activation \( (\Delta S^*) \), thus obtained are summarized in Table 5.3.

No definite relation between the ionic radii and mobility of metal ions with activation energy and entropy of activation was observed. However, the positive values of activation energy indicated that the minimum energy is required to facilitate the forward \( (M^{2+}–H^+) \) ion-exchange process. Negative values of the entropy of activation \( (\Delta S^*) \) suggest a greater degree of order achieved during the forward ion-exchange \( (M^{2+}–H^+) \) process. A comparison of forward ion exchange kinetics behavior of this composite cation exchanger with those of various other composite cation exchangers is given in Figures 5.5 and 5.6. It was observed that the proposed composite cation exchanger possessed lower activation energy to facilitate the ion exchange process (Figure 5.5). Lower negative values of \( \Delta S^* \) indicated that the randomness of this composite cation exchanger is much higher than other composite materials (Figure 5.6). Thus, the ion exchange process is spontaneous in the forward direction than the other composite cation exchange materials.

5.4 Conclusion

The ion exchange kinetic study showed that equilibrium is attained faster at a higher temperature which may be due to the higher diffusion rate of ions through the thermally enlarged interstitial positions of the ion-exchange matrix. The kinetic exchange in the forward direction \( (M^{2+}–H^+) \) for this composite cation exchanger is being governed by the particle diffusion controlled phenomenon which is faster than the film diffusion controlled phenomenon. Activation energy is calculated by using verified and validated Arrhenius equation which showed that lower energy is required
to accomplish the ion exchange process. The negative values of \(\Delta S^*\) indicate that the ion exchange process (M\(^{2+}\)-H\(^+\)) is more feasible under given set of conditions on this composite cation exchange material.
References


Table 5.1: Conditions for the preparation of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger

<table>
<thead>
<tr>
<th>Samples</th>
<th>Mixing volume ratio (V/V)</th>
<th>Carboxymethyl cellulose sodium salt added/g</th>
<th>Color of beads obtained after drying</th>
<th>Na⁺ ion exchange capacity/meq dry g⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 M SnCl₄·5H₂O in 4 M HCl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 M Na₃PO₄·12H₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>White</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>White</td>
</tr>
</tbody>
</table>

Table 5.2: Slopes of various τ versus time (t) plots on carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger at different temperatures

<table>
<thead>
<tr>
<th>Migrating ions</th>
<th>$S \times 10^2$ (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>25°C</td>
</tr>
<tr>
<td>Cu(II)</td>
<td>6.6</td>
</tr>
<tr>
<td>Ni(II)</td>
<td>5.0</td>
</tr>
<tr>
<td>Zn(II)</td>
<td>10.2</td>
</tr>
<tr>
<td>Mn(II)</td>
<td>7.3</td>
</tr>
</tbody>
</table>
Table 5.3: Values of $D_0$, $E_a$ and $\Delta S^*$ for the exchange of $\text{H}^+$ ions with some metal ions on carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like composite cation-exchange material

<table>
<thead>
<tr>
<th>Metal ion exchange with H(I)</th>
<th>$10^9$ Ionic mobility$/\text{m}^2 \text{V}^{-1} \text{s}^{-1}$</th>
<th>$10^2$ Ionic radii/nm</th>
<th>$10^8 D_0$/m$^2$s$^{-1}$</th>
<th>$10^2 E_a$/kJmol$^{-1}$</th>
<th>$\Delta S^*$/J K$^{-1}$ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(II)</td>
<td>57</td>
<td>7.0</td>
<td>8.2604</td>
<td>55.9</td>
<td>-0.7508</td>
</tr>
<tr>
<td>Ni(II)</td>
<td>52</td>
<td>7.8</td>
<td>2.5823</td>
<td>45.04</td>
<td>-1.2557</td>
</tr>
<tr>
<td>Zn(II)</td>
<td>56</td>
<td>8.3</td>
<td>7.1614</td>
<td>48.4</td>
<td>-0.8128</td>
</tr>
<tr>
<td>Mn(II)</td>
<td>55</td>
<td>9.1</td>
<td>0.18707</td>
<td>65.6</td>
<td>-0.3958</td>
</tr>
</tbody>
</table>
Figure 5.1: A plot of $U(\tau)$ versus $t$ (time) for M$^{2+}$–H$^+$ exchanges at 35 °C on carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger for the determination of infinite time.
Figure 5.2: Plots of $U(\tau)$ versus $t$ (time) for $\text{Ni}^{2+}$-$\text{H}^+$, $\text{Cu}^{2+}$-$\text{H}^+$, $\text{Mn}^{2+}$-$\text{H}^+$, $\text{Zn}^{2+}$-$\text{H}^+$ exchanges at different temperatures on carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger.
Figure 5.3: Plots of $\tau$ versus $t$ (time) for $\text{Ni}^{2+}$-$\text{H}^+$, $\text{Cu}^{2+}$-$\text{H}^+$, $\text{Mn}^{2+}$-$\text{H}^+$, $\text{Zn}^{2+}$-$\text{H}^+$ exchanges at different temperatures on carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger
Figure 5.4: Plots of $-\log \overline{D}_{H^+}$ versus $10^3 \frac{10^3 T \text{J/K}}{T \text{K}^{-1}}$ for Ni$^{2+}$-H$^+$, Cu$^{2+}$-H$^+$, Mn$^{2+}$-H$^+$, Zn$^{2+}$-H$^+$ on exchanges on carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger.
Figure 5.5: Plots of activation energy ($E_a$) of Ni$^{2+}$-H$^+$, Cu$^{2+}$-H$^+$, Mn$^{2+}$-H$^+$, Zn$^{2+}$-H$^+$ for various composite cation-exchangers.
Figure 5.6: Plots of entropy of activation ($\Delta S^*$) of Ni$^{2+}$-H$^+$, Cu$^{2+}$-H$^+$, Mn$^{2+}$-H$^+$, Zn$^{2+}$-H$^+$ for various composite cation-exchangers