List of Figures

1.1 Typical system to process analog signals via a discrete time filter. .. 1
1.2 Low Pass (LP) filter. .. 4
1.3 High Pass (HP) filter. .. 4
1.4 Band Pass (BP) filter. .. 4
1.5 Flow chart representing steps required to design digital filters following the proposed design technique. .. 9
1.6 Transformation equation, $x = x_0 \cos(\omega/2)$, with value of $x_0 = 1$. 10
1.7 Desired filter characteristics. .. 10
1.8 Object function for filter characteristics of Figure 1.7, showing the slight non linearity in the transition region. .. 11

2.1 Example Polynomial. .. 16
2.2 Polynomial x^6. .. 18
2.3 Magnitude response in dB for Polynomial x^6. .. 20
2.4 Phase response for Polynomial x^6. .. 20
2.5 Polynomial $(r - 0)(r - 0.1)(r - 0.2)(r - 0.3)(r - 0.4)(r - 0.5)$.. 23
2.6 Magnitude response in dB of $H(z)$ of Equation (2.26). .. 23

3.1 Magnitude response of 6^{th} order Chebyshev low pass FIR filter. .. 29
3.2 Magnitude response in dB of 6^{th} order Chebyshev low pass FIR filter. .. 29
3.3 Phase response of 6^{th} order Chebyshev low pass FIR filter. .. 30
3.4 Magnitude response of 3^{rd} order Chebyshev low pass FIR filter. .. 31
3.5 Magnitude response in dB of 3^{rd} order Chebyshev low pass FIR filter. .. 32
3.6 Magnitude response of 24^{th} order Chebyshev low pass FIR filter. .. 33
3.7 Magnitude response in dB of 24^{th} order Chebyshev low pass FIR filter. .. 34
3.8 Magnitude responses of 32^{nd} order Chebyshev low pass FIR filter for various values of α. .. 36

4.1 First few Chebyshev polynomials in 2 dimension. .. 40
4.2 Magnitude response in dB of 6^{th} order low pass FIR filter. .. 43
4.3 Phase response of 6^{th} order low pass FIR filter. .. 43
4.4 Magnitude response in dB of 6th order Chebyshev high pass
FIR filter. ... 44
4.5 Magnitude response in dB of 20th order Chebyshev low pass
FIR filter. ... 45
4.6 Magnitude response in dB of 20th order Chebyshev high pass
FIR filter. ... 45
4.7 Magnitude response in dB of 40th order Chebyshev low pass
FIR filter. ... 46
4.8 Magnitude response in dB of 40th order Chebyshev high pass
FIR filter. ... 46
4.9 Image-1. ... 47
4.10 Image-1 passed through Chebyshev low pass filter of 6th order. 47
4.11 Image-1 passed through Chebyshev high pass filter of 6th
order. .. 48
4.12 Image-2. ... 48
4.13 Image-2 passed through Chebyshev high pass filter of 6th
order. .. 49
5.1 Plot of first few Legendre polynomials. 53
5.2 Desired characteristics of low pass filter. 54
5.3 Object function, for filter characteristics of Figure 5.2, to be
approximated using Legendre polynomials. 55
5.4 Approximation of object function using first 10 Legendre
polynomials terms, \(P_0 \) to \(P_{18} \) (the object function here is not
showing the non linearities for simplicity). 58
5.5 Magnitude response of the low pass FIR filter corresponding
to the object function shown in Figure 5.4. 59
5.6 Magnitude response in dB of the low pass FIR filter corre-
sponding to the object function shown in Figure 5.4. 59
5.7 Magnitude response of low pass FIR filter when object
function is approximated using 17 Legendre polynomial terms,
\(P_0 \) to \(P_{32} \). ... 60
5.8 Magnitude response in dB of low pass FIR filter when object
function is approximated using 17 Legendre polynomial terms,
\(P_0 \) to \(P_{32} \). ... 61
5.9 Phase response of low pass FIR filter when object function
is approximated using 17 Legendre polynomial terms, \(P_0 \) to
\(P_{32} \). ... 61
5.10 Magnitude response of high pass FIR filter when object fun-
ction is approximated using 21 Legendre polynomial terms,
\(P_0 \) to \(P_{40} \). ... 62
5.11 Magnitude response in dB of high pass FIR filter when object
function is approximated using 21 Legendre polynomial terms,
\(P_0 \) to \(P_{40} \). ... 63
5.12 Magnitude response of band pass FIR filter when object function is approximated using 21 Legendre polynomial terms, P_0 to P_{40}. .. 64

5.13 Magnitude response in dB of band pass FIR filter when object function is approximated using 21 Legendre polynomial terms, P_0 to P_{40}. .. 64

5.14 Magnitude response in dB of low pass FIR filter when object function is approximated using 21 Legendre polynomial terms, P_0 to P_{40}. .. 65

6.1 First few 2D orthogonal polynomials calculated using Equation (6.1). .. 69

6.2 3D desired filter response. .. 70

6.3 1D representation of a low pass 2D filter characteristics. .. 70

6.4 3D object function for filter characteristics of Figure 6.2, showing slight non linearity in the transition region. .. 71

6.5 1D object function, to be approximated using Legendre polynomials. .. 71

6.6 Magnitude response of low pass FIR filter when object function is approximated using 8 orthogonal polynomial terms. .. 75

6.7 Cross section of the magnitude response of low pass FIR filter when object function is approximated using 8 orthogonal polynomial terms. .. 76

6.8 Magnitude response in dB of low pass FIR filter when object function is approximated using 8 orthogonal polynomial terms. .. 77

6.9 Magnitude response of low pass FIR filter when object function is approximated using 15 orthogonal polynomial terms. .. 77

6.10 Cross section of the magnitude response of low pass FIR filter when object function is approximated using 15 orthogonal polynomial terms. .. 78

6.11 Magnitude response in dB of low pass FIR filter when object function is approximated using 15 orthogonal polynomial terms. .. 79

6.12 Magnitude response of high pass FIR filter when object function is approximated using 15 orthogonal polynomial terms. .. 80

6.13 Cross section of magnitude response of high pass FIR filter when object function is approximated using 15 orthogonal polynomial terms. .. 81

6.14 Cross section of magnitude response of band pass FIR filter when object function is approximated using 15 orthogonal polynomial terms. .. 82

xiii
7.9 Phase response of low pass IIR filter corresponding to the object function approximated using 20 orthogonal polynomial terms. .. 106
7.10 Magnitude response in dB when numerator and denominator object functions are approximated using 10 and 20 orthogonal polynomial terms, respectively. 107
7.11 Magnitude response in dB when numerator and denominator object functions are approximated using 20 and 10 orthogonal polynomial terms, respectively. 108
8.1 3D desired low pass filter response. ... 113
8.2 3D desired high pass filter response. ... 113
8.3 3D object function for low pass filter of Figure 8.1, showing the slight non linearity in the transition region. ... 114
8.4 3D object function for high pass filter of Figure 8.2, showing the slight non linearity in the transition region. ... 114
8.5 Example low pass filter with A=0 and B=1100. 117
8.6 Example low pass filter with A=0 and B=2000. 117
8.7 Example low pass filter with A=2000 and B=2000. 118
8.8 Example high pass filter with A=1100 and B=0. 118
8.9 Example high pass filter with A=2000 and B=0. 119
8.10 Example high pass filter with A=2000 and B=2000. 119
8.11 Desired filter characteristics for LPF. ... 121
8.12 Desired filter characteristics for HPF. ... 122
8.13 Magnitude response of low pass IIR filter when object functions are approximated using 9 orthogonal polynomial terms.122
8.14 Magnitude response of high pass IIR filter when object functions are approximated using 9 orthogonal polynomial terms.123
8.15 Magnitude response in dB of low pass IIR filter when object functions are approximated using 9 orthogonal polynomial terms. ... 123
8.16 Magnitude response in dB of high pass IIR filter when object functions are approximated using 9 orthogonal polynomial terms. ... 124
8.17 Image-1. ... 125
8.18 Image-1 passed through low pass filter designed using 9 orthogonal polynomial terms. ... 126
8.19 Image-1 passed through high pass filter designed using 9 orthogonal polynomial terms. ... 127
8.20 Magnitude response of low pass IIR filter when object functions are approximated using 15 orthogonal polynomial terms.128
8.21 Magnitude response of high pass IIR filter when object functions are approximated using 15 orthogonal polynomial terms.128
8.22 Magnitude response in dB of low pass IIR filter when object functions are approximated using 15 orthogonal polynomial terms. ... 129
8.23 Magnitude response in dB of high pass IIR filter when object functions are approximated using 15 orthogonal polynomial terms. ... 129
8.24 Image-1 passed through high pass filter designed using 15 orthogonal polynomial terms. ... 130
8.25 Image-1 passed through low pass filter designed using 15 orthogonal polynomial terms. ... 131
8.26 Image-2. ... 132
8.27 Image 2 passed through high pass filter designed using 15 orthogonal polynomial terms. ... 133
8.28 Image-3. ... 134
8.29 Image-3 passed through high pass filter designed using 15 orthogonal polynomial terms. ... 135
8.30 Image-4. ... 136
8.31 Image-4 passed through high pass filter designed using 15 orthogonal polynomial terms ... 137
8.32 Image-5. ... 138
8.33 Image-5 passed through high pass filter designed using 15 orthogonal polynomial terms. ... 139
8.34 Image-6. ... 140
8.35 Image-6 passed through high pass filter designed using 15 orthogonal polynomial terms. ... 141