Chapter - VI
Summary & Conclusion
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>Need for the Study</td>
<td>251</td>
</tr>
<tr>
<td>6.1</td>
<td>Statement of the Problem</td>
<td>252</td>
</tr>
<tr>
<td>6.2</td>
<td>Objectives of the Study</td>
<td>252</td>
</tr>
<tr>
<td>6.3</td>
<td>Hypothesis of the Study</td>
<td>253</td>
</tr>
<tr>
<td>6.4</td>
<td>Definition of Key Terms used in the Study</td>
<td>253</td>
</tr>
<tr>
<td>6.5</td>
<td>Methods and Procedures</td>
<td>255</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Sampling</td>
<td>255</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Methodology</td>
<td>257</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Tools used in the study for Both the Descriptive and Experimental Phases</td>
<td>258</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Statistical Techniques used in the Study</td>
<td>260</td>
</tr>
<tr>
<td>6.6</td>
<td>Major Findings</td>
<td>261</td>
</tr>
<tr>
<td>6.7</td>
<td>Educational Implications</td>
<td>263</td>
</tr>
</tbody>
</table>
CHAPTER – VI
SUMMARY AND CONCLUSION

6.0 Need for the Study

The main objective of Geography as a school subject is to develop a knowledge and understanding of Geography, and to build a working knowledge of its basic methodology. It also aims at helping the students in working out their skills and appreciating the materials given to them by the teacher. The status of Geography learning has not been satisfactory. The methodologies employed generally involve rote learning of information without relating to the world outside. Various strategies have been suggested for effective Geography teaching but none of them appeared to have been effectively used in the classrooms. The development of Map Skills and thinking/processing skills are totally ignored. Recognizing the importance of developing the competencies in the learning of Geography at secondary level as well as knowing the several drawbacks that can be remedied such as the improvement of teaching and learning strategies on the part of teachers, there was the need to conduct this study.

Hilda Taba’s inductive thinking model suggested in the year 1966 was especially for the teaching of social studies, has not been tried or experimented by teachers adequately. In the present study, an attempt is made to evolve a justification for a strategy to improve the quality of teaching of geography in schools by analysing the status of achievement of Process Skills and Map Skills among secondary schools students in Seychelles. Another main objective was to re-examine the suitability of inductive model for promoting thinking/Process Skills in geography among students. The teaching model proposed by Hilda Taba was adapted to integrate the objective of the development of Map Skills as well. The strategy based on this model was experimentally tried out to study its effectiveness in developing Process Skills, Map Skills, and understandings in geography which are the main objectives of teaching geography in general. Further this status of achievement of student in Seychelles is compared with secondary schools students in Mysore, a city in India where a relatively similar curriculum of CBSE (Central Board of Secondary Education) is followed.
6.1 Statement of the Problem

The study focuses on exploring the relative status of achievement of Process Skills and Map Skills among Secondary School Students of Seychelles and Mysore (India) and to mainly study experimentally the effects of a strategy based on Inductive Thinking Model of Teaching developed by Hilda Taba (1966) on the development of Competencies – Knowledge and Understandings, Process Skills and Map Skills, in the learning of Geography among Secondary students in Seychelles.

6.2 Objectives of the Study

General objectives:

i) To study the levels of achievement in Map Skills among Secondary level students in Seychelles and Mysore (a city in India) and to make a comparison of these levels between the two countries

ii) To study the levels of achievement in Process Skills among Secondary level students in Seychelles and Mysore (a city in India) and to make a comparison of these levels between the two countries

iii) To compare the levels of achievement in Map Skills and Process Skills between boys and girls in Mysore (a city in India) and between boys and girls in Seychelles, taken separately

iv) To analyse the perceptions of Geography Teachers and their students in Seychelles on learning of Geography.

v) To prepare an Instructional Programme using a strategy based on inductive Model of Teaching by Hilda Taba to develop expected competencies-knowledge and understandings, Process Skills and Map Skills in learning of Geography among Secondary students at S1 level in Seychelles, using the inductive thinking model developed by Hilda Taba (1966).

vi) To compare the effectiveness of teaching through the Instructional Programme based on Hilda Taba’s Inductive Thinking Model and through existing/conventional approach being used, in terms of achievement of the selected competencies in Geography among secondary students at S1 level in Seychelles as listed below:

- Achievement in Process Skills,
- Knowledge and Understandings in Geography,
- Achievement in Map Skills
6.3 Hypothesis of the Study

Hypotheses were formulated both for the Descriptive Phase and the Experimental Phase of the Study related to objectives i, ii, iii, iv, v and vi.

- **Ho₁:** There is no significant difference between Secondary One (S1) students in Seychelles and 8th Standard students of Mysore (a city in India), taken separately with regard to:
 - Achievement in Map Skills
 - Achievement in Process Skills.

- **Ho₂:** There is no significant difference between means of boys and girls among Secondary One (S1) students in Seychelles and between boys and girls among 8th Standard students of Mysore (a city in India), taken separately with regard to:
 - Achievement in Map Skills
 - Achievement in Process Skills.

- **Ho₃:** There is no significant mean difference between students in the Experimental groups after the experiment with respect to the achievement of Process Skills after adjusting for the initial difference in intelligence.

- **Ho₄:** There is no significant mean difference between students in the Experimental groups after the experiment with respect to the achievement in Knowledge and Understandings competencies in Geography after adjusting for the initial differences in Pre-achievement in Knowledge and Understandings in Geography and Intelligence.

- **Ho₅:** There is no significant mean difference between students in the Experimental groups after the experiment with respect to the achievement of Map Skills after adjusting for initial differences in Pre-achievement in Map Skills and Space Relations.

6.4 Definition of Key Terms used in the Study

- **Knowledge and Understandings in Geography:** They are related to the basic understandings intended to be learnt from the units on ‘Population studies, Settlement Studies and Tourism’, of Geography prescribed for the S1 students in the Seychelles Geography Syllabus.
- **Process Skills**: They are intellectual skills or capabilities required to analyse information. They are also called the Thinking Skills. Process Skills also include the ability to make observations and, through the use of inference to generalize, to predict and to explain events. Through these processes the learner is able to move beyond memorization of information to the development of more abstract and useful forms of knowledge - facts, concepts and generalizations (Eggen, et al, 1979)

- **Competencies in the learning**: It refers to the ability of the learner to demonstrate a composite performance which is based on the acquisition, integration and application of a set of specific skills and knowledge. Competency refers to the level of proficiency in the performance in terms of expected learning outcomes. The expected learning outcomes are described as specific instructional objectives expressed in observable behavioral terms. Competencies in learning Geography include knowledge and understandings, skills, and attitudes which can be inferred from the objectives of the Geography Curriculum of the Seychelles.

- **Instructional Programme**: This is based on Hilda Taba’s Inductive Thinking Model of Teaching. It includes the various Teaching-Learning activities which intend to develop knowledge and understandings, and to develop Process Skills and Map Skills in learning selected units on Geography prescribed for the S1 Term 3 syllabus in Seychelles.

- **Expert experienced teachers**: Refer to the teachers who are recognized as good Geography teachers by students and authorities. They are trained in the field and have acquired experience over the years.

- **Understanding** is a product of experience, ideas and mental processes, and the relationships between them. It, therefore, involves much more than ideas.

- **Ideas** can be expressed verbally in a variety of ways, which include concepts, generalisations, and conceptual structures.

- **Concepts** are of fundamental importance, attention should also be given to other ways of expressing ideas, and especially the relationships between ideas

- **Achievement in Process Skills** are the scores obtained in the test prepared by the investigator which includes sub scores on observation skill, classification skill, inferring skill, predicting skill, and total scores on all the sub scores.
• **Achievement in Map Skills** are the scores obtained in the test prepared by the investigator which includes sub scores on the different sections, namely, directions, grid references, map scales, map language and colours, map symbols, distribution, inference, and total scores on all the sub scores.

• **Intelligence** is the score obtained in the standardized Raven’s progressive Matrices (RPM) test, constructed by J.C. Raven.

• **Space Relations** is the score obtained in one of the standardized test of the eight tests in the Differential Aptitude Tests (DAT), designed by Bennett, Seashore and Wesman in 1951.

• **Experimental groups** are the students of the S1\(^1\) of school 1 (Belonie Secondary School), and the students of S1\(^4\) of school 2 (Mont Fleuri Secondary School) in Seychelles exposed to the experimental treatment by the investigator. The experimental treatment involved the use of Instructional Programme prepared by the investigator. This Instructional Programme was based on the Inductive Thinking Model of Teaching by Hilda Taba.

• **Parallel groups** are the students from another section of S1 in school 1 (Belonie Secondary School), namely, S1\(^2\); and the students from another section of S1 in school 2 (Mont Fleuri Secondary School), namely, S1\(^1\) in Seychelles exposed to the existing/conventional approach followed by the geography teacher of the respective school.

6.5 Methods and Procedures

The methodology of the study is divided into two phases: the descriptive and the experimental phases. The details of the methodology for these two phases are given below:

6.5.1 Sampling

The sampling for the descriptive Phase

This involves the survey part of the study where the Investigator made comparisons were made between five selected secondary schools out of ten from Seychelles, and all the five CBSE secondary schools from Mysore (India); and following similar National Syllabi. In each of the selected secondary schools in Seychelles, all the students in any two randomly selected sections of S1 level / age group (12+), were selected. Roughly, the total number of students from each school
ranged from 50 to 70 students. All the sections had mixed ability students. In India, in each of the selected secondary schools, all the students of similar age group (12+) /grade level (8th Standard) were included in the study, because the total number of students in each of the schools did not exceed 80. The sample of students selected in both the countries included both boys and girls. All the students studied in English medium. All the students selected in both the countries were studying during the year 2009-2010.

Sampling for the experimental Phase

i) Selection of the Schools.

The study was conducted in two separate Secondary Schools (State), in Seychelles, namely Belonie Secondary School and Mont Fleuri Secondary School. The reasons for selecting these two schools are explained below:

- Out of ten State secondary Schools in Seychelles, which follow the National Curriculum developed by the Ministry of Education (Seychelles), those two selected schools are found in the Urban area of Mahe (the principal island in the Seychelles), which also are found close to the Ministry of Education. Both schools have parallel sections at S1 level that would facilitate the validation of the Treatment by Experimental-Control group design.
- The Investigator has a long period of teaching experience through the Geography syllabus in the National Curriculum of which is English medium. As a result, the two State Secondary schools were chosen, although they are distant from each other, to avoid contamination.

The first school chosen, Belonie Secondary school had a total strength of 63 students, whereas the second school chosen, Mont Fleuri Secondary School, had a total strength of 45 students. The description of the selection is illustrated under each of the schools below.

School 1: Belonie Secondary School – Allotment of Groups for Experimental and Parallel Treatment

In all there are six sections in Belonie Secondary school, and all sections are of mixed ability. Thus, they were all mixed in terms of ability level, Socio-Economic Status (SES), Level of achievement, and Intelligence. Therefore, it can be safely presumed that the two sections selected would be equal in terms of age (12 to 14
years), SES, Intelligence and level of achievement. So the Investigator randomly selected Section S12 for the parallel treatment and Section S11 for the Experimental Treatment. The Investigator was free during the time of Geography classes allotted to the S12 class.

School 2: Mont Fleuri Secondary School – Allotment of Groups for Experimental and Parallel Treatment

In all there are four sections in Mont Fleuri Secondary school, and all sections are of mixed ability. Thus, they were all mixed in terms of ability level, Socio-Economic Status (SES), Level of achievement, and Intelligence. Therefore, it can be safely presumed that the two sections selected would be equal in terms of age (12 to 14 years), SES, Intelligence and level of achievement. So the Investigator randomly selected Section S11 for the parallel treatment and Section S14 for the experimental treatment. The Investigator was free during the time of Geography classes allotted to the S12 class.

Thus, in Belonie Secondary School, Section S11 (the experimental group) had a strength of 31 students whereas Section S12 (the parallel group) had a strength of 31 students respectively, whereas in Mont Fleuri Secondary School, Section S14 (the experimental group) had a strength of 21 students whereas Section S11 (the parallel group) had a strength of 23 students respectively.

6.5.2 Methodology

a) **Descriptive Phase:** The methodology was mostly survey method to compare selected schools from Seychelles, to those from Mysore (India); and the relative status of achievement of Process Skills and Map Skills between the two countries. The data were collected from all the students related to Process Skills and Map Skills using the tools prepared by the Investigator.

b) **Experimental Phase:** This phase was conducted on the students of a selected Secondary One (S1) class (age group 12+), of two selected Secondary schools, namely Belonie Secondary and Mont Fleuri Secondary Schools, in Seychelles during the year 2008-09. Two parallel experiments in the two schools as there were one experimental group which was exposed to experimental treatment and a parallel group which was exposed to existing conventional treatment in each
of the two schools. The experimental group in both the schools was taught by the investigator following the Instructional strategy using the Instructional Programme based on Inductive Thinking Model of Teaching of Hilda Taba, 1966. The parallel group which was exposed to the existing/conventional approach to teaching was taught by the geography teachers in the respective schools. All the students in all the treatment groups were taught the same units in geography, almost for the same number of periods of instruction (about 42) in both the schools.

The experimental treatment involved preparation of an instructional programme by the investigator.

This involves an Instructional Programme which is developed and validated the same in relation to the conventional/existing approach that Geography teachers are using at Lower Secondary classes. This Instructional Programme was specially designed for the development of Process Skills in the methodology of teaching that will further develop understandings in Geography, and Map Skills. The main purpose of the Instructional Programme designed was based on the Inductive model of Teaching and Learning by Hilda Taba’s work of 1966. The decision to use this model by the Investigator is to help teachers better their teaching and not only providing their students with as much information but getting them to enhance their intellectual ability. Another reason goes to the development of competencies that needs to be shaped in the learning Geography at Lower Secondary level, and especially in the development of Map Skills which is one area that contains the competencies that forms the backbone of Geography teaching.

6.5.3 Tools used in the study for Both the Descriptive and Experimental Phases

Raven’s Standard Progressive Matrices.

This tool is standardized and was constructed by J.C. Raven. The intelligence level of all the students selected for the treatment will be measured using this tool. The Raven’s progressive Matrices (RPM), is a non-verbal test for measuring the intelligence of persons above the age of eleven. From the Raven’s report, the reliability coefficients of the test vary from low 0.80 to low 0.90. In this RPM booklet, there are five sets of problems. They are sets A, B, C, D and E. Each one set has 12 problems. Every problem requires the user to select the design that completes the pattern.
The problems provide opportunities for grasping the progressive assessment of the person’s capacity for intellectual activity. Each set begins with easy problems and gradually moves on to difficult ones. Each correct response is awarded one mark and the total is out of sixty. The time allotted for the administering of this test is 30 minutes. This test will be used as a covariate.

Space Relation Test

This tool is also standardized. It is one of the eight tests in the Differential Aptitude Tests (DAT), designed by Bennett, Seashore and Wesman in 1951. There are 40 items in this test. Each item consist of a block with a three-dimensional (3D) object to the left and to the right is a series of five two-dimensional (2D) figures from which the students are to choose the matching figure or figures. Each block has five sets of 2D responses labeled as A, B, C, D and E. There are instances whereby for one question in a block, there is more than one response. So the students will have to be given very precise instructions as to how to score this Space Relation booklet. The total time to administer this test is 30 minutes. This test will be used as a covariate.

Achievement Test on Map Skills

This tool was the modified version of the ‘Map Skills Test’ prepared by the Dorothy B. Felix (2004) for her Master’s dissertation under the supervision of Professor M.S. Lalithamma. The purpose of this test is to assess achievement of Map Skills of Secondary students of Seychelles schools, as well as in Mysore (India). This test consists of 93 response items of objective type measuring achievement of Map Skills, namely direction, scale, distance, relative location, distribution, symbolization and inference. Each correct response is given 1 mark. The selected students for both treatment groups will administer this test. The time allotted for this test is one and a half (1½) hours. This test will be used as a dependent variable in the descriptive phase of the study, as well as a dependent variable in the post-test method of the experimental phase. It will be used as a covariate in the pre-test method of the experimental phase.
Process Skills Test in Geography

This tool is was prepared and developed by the investigator. The purpose of this tool was designed to measure the levels of Process Skills in Geography among the S1 students after the experiment in the experiment phase of the study (dependent variable), and also to compare the levels of Process Skills between selected S1 students in Seychelles and 8th Standard students in Mysore (India) in the descriptive phase of the study (dependent variable).

Teachers’ semi-structured questionnaire

This tool will be prepared by the investigator on the purpose of analyzing the methodology followed by the teachers in teaching Geography in general, and in the development of Map Skills. The teachers will attempt self-evaluation of their teaching methods followed in their Geography classroom. This will help the investigator to have an idea of how the teachers teach Geography in the classroom as perceived by themselves. All the teachers in the selected schools teaching Geography at S1 level will participate in this inventory.

Teacher perception’s scale

This tool was prepared by the investigator on the purpose of analyzing the methodology followed by the teachers in teaching Geography in general, and in the development of Map Skills, Process Skills and understandings in geography. Each statement was analysed separately and there is no total score for this tool.

6.5.4 Statistical Techniques used in the Study

Various parametric and non-parametric techniques were used for data analysis by verifying the different hypotheses formulated in the study. They include:

- \(T \)-test – This was used to find the significance between mean scores on achievement on Map Skills and Process Skills; between different groups classified on gender and school type, for the both the descriptive and experimental phases of the study. It was also used to find the significance of mean scores for achievement in Geography understandings in the experimental phase.

- Analysis of covariance (ANCOVA) – was employed to test the significant mean differences in achievement in map skills, Process Skills and achievement in Geography understandings between the different groups after
adjusting for initial differences in each of the two co-variates namely intelligence, space relations, pre-achievement in Geography understandings and pre-achievement in map skills.

- Chi-squared technique – was employed to analyse the trend of responses related to students’ evaluation of their Geography teachers. The same technique was also employed to analyse the data related to what methodology teachers had been using for teaching Geography.

6.6 Major Findings

- The Indian students are better than the Seychelles students in all sections in the Process Skills, namely; Observation, Classification, Inferring, Predicting, and Total scores: and most sections of Map Skills namely Directions, Grid References, Map Scales, Map Language and Colours, Map Symbols, Distribution, and Total Scores.
- The students in Seychelles are better only in the Map Skills, namely, Inference.
- There is no significant difference between Indian students and Seychelles students in map Skills namely; Grid references, Directions, Distribution, and Total Scores.
- Girls are better than boys for both India and Seychelles in Process Skills namely, Classification; and Map Skills, namely, Grid References.
- Boys and girls are performing equally well in most Map Skills in India, namely; Grid references, Directions, Map Scales, Map Language and Colours, Map Symbols, Distribution, Inference, and Total Scores: and in Process Skills, namely, Observation, Inferring, Predicting, and Total Scores.
- In Seychelles schools, boys and girls are performing equally well in Process Skills, namely, Inferring and Predicting.
- The girls are better than the boys in Seychelles in all the Map Skills, namely; Directions, Grid References, Map Scales, Map Language and Colours, Map Symbols, Distribution, Inference, and Total Scores: and in the Process Skills namely Observation, Classification and Total Scores.
- Girls are better than boys in India in the map Skills, namely, Grid References; and in the Process Skills, namely, Classification.
- There is no significant difference between boys and girls in secondary Schools in India in the performance of Map Skills namely; Directions, Grid References, Map Scales, Map Language and Colours, Map Symbols, Distribution, Inference, and Total Scores: and in the performance in Process Skills, namely; Observation, Inferring, Predicting, and Total Scores.
• There is no significant difference between boys and girls in the Secondary Schools in Seychelles in the performance of Process Skills namely; Inferring and Predicting.

• There is a definite trend in the following three components: (i) self-perception of approaches to teachers in teaching Geography, (ii) self-perception on the nature of classroom interaction in their Geography classrooms, and (iii) opinion on the liking of Geography in general and their use of Map Skills in the Geography classroom.

• The majority of the teachers always read the syllabus to the students at the beginning of the term so that they know the topics to be learned.

• The majority of the teachers frequently produce their own charts and diagrams for their classrooms.

• The majority of the teachers when faced with some difficult topics like River Study and The Hydrological Cycle use charts and diagrams but this depend on the topic.

• The majority of the teachers frequently use a wide variety of teaching strategies in Geography.

• The majority of the teachers occasionally encourage their students to develop their creative capacities through instruction and practice.

• The majority of the teachers occasionally encourage group-work in their classroom.

• The majority of the teachers found that their students are seldom interested in the Geography lessons.

• The majority of the teachers seldom conduct outside activities to promote learning and leadership skills.

• The experimental treatment based on Hilda Taba Inductive Thinking Model of teaching is more effective than the conventional treatment in the parallel groups in achievement in Knowledge and Understandings in Geography ‘Part III’ in school 1, school 2 and, school 1 and 2 taken together both before and after adjusting for the covariates namely; Pre-achievement in Knowledge and Understandings in Geography ‘Part III’, and Intelligence.

• There is no significant mean difference between students in the Experimental groups for school 1, school 2 and, school 1 and 2 taken together, after the experiment with respect to the achievement of Process Skills, namely; observation and inferencing both before and after adjusting for the initial difference in intelligence.
There is no significant mean difference between students in the Experimental groups for school 1, school 2 and, school 1 and 2 taken together after the experiment with respect to the achievement in Knowledge and Understandings in Geography ‘Part II’ before and after adjusting for the initial differences in Pre-achievement in Knowledge and Understandings in Geography ‘Part II’, and Intelligence.

There is no significant mean difference between students in the Experimental groups for school 1, and school 1 and 2 taken together after the experiment with respect to the achievement in Knowledge and Understandings in Geography ‘Part I’ before and after adjusting for the initial differences in Pre-achievement in Knowledge and Understandings in Geography ‘Part I’, and Intelligence.

There is no significant mean difference between students in the Experimental groups for school 1 after the experiment with respect to the achievement in Knowledge and Understandings in Geography ‘Total Scores’ before and after adjusting for the initial differences in Pre-achievement in Knowledge and Understandings in Geography ‘Total Scores’, and Intelligence.

There is no significant mean difference between students in the Experimental groups after the experiment in school 1, with respect to the achievement of Map Skills - Directions before and after adjusting for initial differences in Pre-achievement in Map Skills- Directions, and Space Relations.

There is no significant mean difference between students in the Experimental groups after the experiment in school 1, and school 1 and 2 taken together, with respect to the achievement of Map Skills - Directions only after adjusting for initial differences in Pre-achievement in Map Skills- Directions, and Space Relations.

6.7 Educational Implications

The present study has demonstrated the relative status of achievement of Process Skills and Map Skills among Secondary School Students of Seychelles and Mysore (India) and mainly the study has demonstrated the effectiveness of Inductive Thinking Model of Teaching on the development of Competencies – Knowledge and Understandings, Process Skills and Map Skills, in the learning of Geography among
Secondary students in Seychelles. A slightly modified version of the Inductive Thinking Model of teaching developed by Hilda Taba (1966), was tested for effectiveness on developing the competences. This model of teaching was built into the instructional programme which was activity-based. Hence it is also demonstrated that the instructional programme was effective. Further, it is demonstrated that the developed programme is feasible from the following points of view – one, it can be fitted into the existing Geography curriculum, and two it is perceived favourable by the students who were exposed to it.

It is implied from the above findings that the knowledge and understandings in geography, Process Skills, as well as Map Skills which generally do not adequate place emphasis in the present curriculum in schools could be developed through the use of the instructional programme based on Inductive Thinking Model, which is activity-based, better than direct instruction as it happens in the existing/conventional approach.

The instructional Programme which is activity-based as developed in the present study could be more useful and effective especially from the points of view of developing knowledge and understandings, Process Skills in Geography, and strengthening Map Reading Skills.

However, the Instructional Programme was de-limited to the specific area in geography content prescribed for S1 students in Seychelles secondary schools. This implies that the entire textbooks used in geography teaching for S1 as well as that prescribed for other classes be revised along with the preparation of teacher’s guidebook, on the lines of the Instructional Programme prepared in the present study. It is further implied that teacher orientation programmes are to be organized for teaching of geography in using such teacher support materials which are activity based, focusing on deliberate attempt to develop knowledge and understandings in geography, Process Skills, and development of Map Skills, where the latter plays a vital and significant role.