CONTENTS

Abstract i
List of Abbreviations xi
List of Figures xii
List of Tables xvi

1 INTRODUCTION 1

1.1 Introduction 1
1.2 Hardfacing of Valve Seat Ring 2
1.3 Motivation 2
1.4 Plan and Sequence of Research 4

2 LITERATURE SURVEY 7

2.1 Introduction 7
2.2 Hardfacing 7
2.3 Hardfacing Alloys 7
2.3.1 Early materials for Hardfacing 8
2.3.2 Hardfacing material for Valve Seat Rings 9
2.3.3 Cobalt base alloys 10
2.4 Weld Geometry and Dilution 12
2.4.1 Weld Bead geometry 12
2.4.2 Dilution 13
2.5 Hardfacing Valves 13
2.6 GTAW Process 15

iv
Welding Variables and their Effects in Surfacing 15

2.8 Automatic welding machine 16

2.9 Design of Experiments 17

2.10 Mathematical Models 17

2.11 Artificial Neural Networks (ANN) 18

2.12 Optimization of Bead Parameters 18

2.13 Sensitivity Analysis 19

2.14 Metallurgical Studies 20

2.15 Wear studies 21

2.16 Genetic Algorithm 21

2.16.1 Basic Genetic Algorithm 23

2.16.2 Representation 23

2.16.3 Decoding 24

2.16.4 Initialization and Reproduction 24

2.16.5 Crossover 25

2.16.6 Mutation 26

2.16.7 GA Parameters 27

2.16.8 Population Size 27

2.16.9 Crossover Probability 28

2.16.10 Mutation Probability 28

2.16.11 Termination Criterion 28

2.17 Corrosion Studies 28
3 DESIGN OF EXPERIMENTS

3.1 Introduction

3.2 Terminology Used

3.2.1 Factor

3.2.2 Level

3.2.3 Treatment

3.2.4 Experimental Units

3.2.5 Experimental Environment

3.2.6 Block

3.2.7 Experimental Design

3.2.8 Planned Grouping

3.2.9 Randomization

3.2.10 Replication

3.2.11 Factorial Design

3.2.12 Response Surface Design

3.3 Development of Digital Circumferential Manipulator

3.3.1 Digital Circumferential Manipulator

3.3.2 Material Used

3.3.3 Selection of Process Parameters and their Working Ranges

3.3.4 Selection of Design Matrix
4 DEVELOPMENT OF MATHEMATICAL MODELS

4.1 Introduction

4.2 Plan of investigation

4.2.1 GTAW Surfacing Setup

4.2.2 Automatic Welding Machine

4.2.3 Conducting the Experiments and Recording the Responses

4.3 Developing models and calculating the coefficients

4.3.1 Checking the adequacy of the models

4.3.2 Conformity test

4.4 Direct Effects of Process Parameters

4.5 Interaction Effects of Process Variables on Bead Parameters

4.5.1 Interaction Effect of Welding Current and Filler rod Feed rate on Dilution (D)

4.5.2 Interaction Effect of Welding Current and Filler rod Feed rate on Reinforcement (R)

4.5.3 Interaction Effect of Welding Current and Welding Speed on Reinforcement (R)

4.5.4 Interaction Effect of Filler rod Feed rate and Welding Speed on Reinforcement (R)
4.5.5 Interaction Effect of Welding Current and Filler rod Feed rate on Bead width (W)

4.5.6 Interaction Effect of Filler rod Feed rate and Welding speed on Bead width (W)

4.6 Artificial Neural Network

4.6.1 ANN for Determination of Bead Parameters

4.6.2 Analysis of ANN results

4.7 Conclusions

5 OPTIMIZATION AND SENSITIVITY ANALYSIS

5.1 Introduction

5.2 Methodology

5.3 Sensitivity Analysis

5.4 Conclusions

6 WEAR STUDIES

6.1 Introduction

6.2 Wear Factors

6.3 Experimental Procedure

6.3.1 Limits of Variables

6.3.2 Design Matrix

6.3.3 Conducting the Experiment and Recording of Response
6.4 Development of Mathematical Model

6.4.1 Coefficients of the Wear Model

6.4.2 Final Developed Model for Wear

6.5 Optimization

6.6 Sensitivity Analysis

6.7 Results and Discussions

6.7.1 Direct Effects of Variables

6.7.2 Interaction Effect of Normal load (P) and Sliding velocity (S) on Wear (W)

6.7.3 Interaction Effect of Normal load (P) and Track radius (R) on Wear (W)

6.7.4 Optimization Results

6.7.5 Sensitivity Analysis Results

6.8 Optimization through Genetic Algorithm

6.8.1 Function and Constraints

6.8.2 Initialization

6.8.3 Selection

6.8.4 Crossover

6.8.5 Mutation

6.8.6 Results and Discussions

6.9 Conclusions
7 COLOR METALLOGRAPHY AND CORROSION STUDIES

7.1 Introduction 104

7.2 Color Metallography 104

7.2.1 Specimen Preparation 105

7.2.2 Preparation of Etchant 105

7.2.3 Experimental Procedure 106

7.3 Corrosion 114

7.3.1 Pitting Corrosion Procedure 114

7.4 Conclusions 116

8 CONCLUSIONS AND FUTURE RESEARCH 117

8.1 Conclusions 117

8.2 Suggestions for Future Research Work 120

References 122

Papers Published out of this research work 132

Appendix I 134

Appendix II 136

Appendix III 148