REFERENCES

40. Uwi Schlink, Peggy Haase, Giuseppe Nunnari, Olf Herbarth, 'Identifying and Modelling dynamical non linearity in time series of urban air pollution', A contribution to sub-project SATURN.

263
42. **Oleg M. Pokrovsky, Roger H.F. Kwok and C.N. Ng, (2002),** 'Fuzzy logic Approach For Description of Meteorological Impacts on urban air pollution species: A Hong Kong Case Study'.

http://ams.confex.com/ams/annual2000/2 artificially/abstracts/5628.htm

43. **Emili Balaguer Ballester, Emilio Saria Olivas, Jose Luis Carasco-Rodriguez, Secundio Del Valle-Tascon, (2001),** 'Forecasting of surface Ozone concentrations 24 hours in advance using neural networks'.

45. **M.Zickus, A.J.Greig, M.Niranjan,** 'Evaluating the variable selection and prediction performance of several Machine Learning Algorithms Applied to a PM$_{10}$ Data set'.

http://www.m.unc.ugam.ca/publications/publications.html

52. **Keith,H.** (1998), Principles of Environmental Sampling, American Chemical Society.

73. **El-Hawary, F.**, (1995) 'Application of Computational Neural Networks in Predicting Atmospheric Pollutant Concentrations Due to Fossil-Fired Electric Power Generation', Presented at Workshop on Environmental and Energy Applications of Neural Networks, Richland, WA.

88. **Air Quality Research Subcommittee of the Committee on Environment and Natural Resources**, (2001), 'Air Quality Forecasting – A Review of federal programs and Research Needs', NOAA Aeronomy Laboratory, Colorado.
 http://www.al.noaa.gov/AQRS/reports/Forecasting.pdf

90. Guidelines for micrometeorological techniques in air pollution studies IS 8829-1978.
