<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Location map of the study area.</td>
</tr>
<tr>
<td>2.</td>
<td>Topography and drainage map.</td>
</tr>
<tr>
<td>3.</td>
<td>Soil distribution map.</td>
</tr>
<tr>
<td>4.</td>
<td>Field photo showing vertical section of red soil.</td>
</tr>
<tr>
<td>5.</td>
<td>Field photo showing vertical section of black soil.</td>
</tr>
<tr>
<td>6.</td>
<td>Field photo showing coconut trees in the residential areas.</td>
</tr>
<tr>
<td>7.</td>
<td>Field photo showing western ghat hillocks.</td>
</tr>
<tr>
<td>8.</td>
<td>Field photo showing eastern plains.</td>
</tr>
<tr>
<td>10.</td>
<td>Satellite imagery.</td>
</tr>
<tr>
<td>12.</td>
<td>Geological map of the study area.</td>
</tr>
<tr>
<td>13.</td>
<td>Field photo showing shales of different shades.</td>
</tr>
<tr>
<td>14.</td>
<td>Field photo showing non laminated hard argillite.</td>
</tr>
<tr>
<td>15.</td>
<td>Field photo showing joints in phyllite.</td>
</tr>
<tr>
<td>16.</td>
<td>Field photo showing an outcrop of banded iron formations.</td>
</tr>
<tr>
<td>17.</td>
<td>Field photo showing iron and silica bands in banded iron formations.</td>
</tr>
<tr>
<td>18.</td>
<td>Field photo showing quartz veins in phyllite.</td>
</tr>
<tr>
<td>19.</td>
<td>Field photo showing folds in shales.</td>
</tr>
<tr>
<td>20.</td>
<td>Field photo showing minor folds and faults in shales.</td>
</tr>
<tr>
<td>22.</td>
<td>Annual variation of rainfall (32 years).</td>
</tr>
<tr>
<td>23.</td>
<td>Location of raingauge stations and isohyetal map.</td>
</tr>
<tr>
<td>24.</td>
<td>Field photo showing a shallow dug well section.</td>
</tr>
<tr>
<td>25.</td>
<td>Field photo showing a deep dug well section.</td>
</tr>
<tr>
<td>26.</td>
<td>Field photo showing a shallow dug well section, exhibiting dipping and fractures of shale.</td>
</tr>
<tr>
<td>27.</td>
<td>Classification of open wells with respect to depth.</td>
</tr>
<tr>
<td>28.</td>
<td>Classification of open wells with respect to water level fluctuation.</td>
</tr>
</tbody>
</table>
29. Map showing spatial variation in depth to static water level.
30. Map showing water table contours (Premonsoon).
31. Map showing water table contours (Postmonsoon).
32. Map showing water table fluctuation.
33. Water table fluctuation profile.
34. Relation between rainfall and water level.
35. Classification of bore wells with respect to yield and depth.
36. Depth and yield relations of bore wells.
37. Classification of bore wells with respect to casing.
38. Location map of Pumping test wells and VES.
40. Typical curve (Papadopoulos and Cooper, 1967 method).
41. Typical curve (Mishra and Chachadi 1985, method).
42. Map showing spatial variation in transmissivity values.
43. Slitcher's solution for determining specific capacity.
44. Productivity frequency plot for wells.
45. Classification of wells with respect to transmissivity and hydraulic conductivity.
46. Relation between specific capacity, area of cross-section, depth and transmissivity.
47.
48. Typical VES curves.
49.
50. Geoelectrical cross-sections.
51. Geoelectrical fence diagram.
52a. VES curves, electrical logs and lithologic logs (Shale).
52b. VES curve, electrical logs and lithologic logs (Phyllite).
53. Well hydrograph (Bidinhal, Hubli).
54. Well hydrograph (Saptapur, Dharwad).
55. Collin's bar diagram (Hubli urban area).
56. Collin's bar diagram (Dharwad urban area).
57. Location and Ca ranges of groundwater samples (Hubli urban area).
58. Location and Cl ranges of groundwater samples (Hubli urban area).
59. Location and TH ranges of groundwater samples (Hubli urban area).
60. Location and TDS ranges of groundwater samples (Hubli urban area).
61. Location and Ca ranges of groundwater samples (Dharwad urban area).
62. Location and Cl ranges of groundwater samples (Dharwad urban area).
63. Location and TH ranges of groundwater samples (Dharwad urban area).
64. Location and TDS ranges of groundwater samples (Dharwad urban area).
65. Location and Ca ranges of groundwater samples (Suburban area).
66. Location and Cl ranges of groundwater samples (Suburban area).
67. Location and TH ranges of groundwater samples (Suburban area).
68. Location and TDS ranges of groundwater samples (Suburban area).
70. Classification of irrigation water (Wilcox, 1948).
71. Plots of component scores (Hubli urban area).
72. Plots of component scores (Dharwad urban area).
73. Plots of component scores (Suburban area).
74. Location map of groundwater samples along/across sewage course (Hubli urban area).
74a. Classification of wells with respect to concentration of trace elements.
75. Plots of component scores (Hubli urban area).
76. Seasonal variation in groundwater quality.
77a. Chemical types of groundwaters (Hubli urban area).
77b. Chemical types of groundwaters (Dharwad urban area).
77c. Chemical types of groundwaters (Suburban area).
77d. Chemical types of groundwaters (Hubli urban area).
78a. Chemical facies of groundwaters (Hubli urban area).
78b. Chemical facies of groundwaters (Dharwad urban area).
78c. Chemical facies of groundwaters (Suburban area).
78d. Chemical facies of groundwater (Hubli urban area).
79a. **Mechanisms controlling groundwater chemistry (Hubli urban area).**

79b. **Mechanisms controlling groundwater chemistry (Dharwad urban area).**

79c. **Mechanisms controlling groundwater chemistry (Suburban area).**

79d. **Mechanisms controlling groundwater chemistry (Hubli urban area).**

80. []

81. [] Field photos showing open drainage carrying domestic/industrial sewage.

82. []

83. []

84. **Land use/land cover pattern (1930-31).**

85. **Land use/land cover pattern (1975-76).**

86. **Land use/land cover pattern (1988).**

87. **Map showing comparison of land use/land cover patterns and groundwater quality.**

88. **Zones formed by chemical types of groundwaters.**

89. **Zones formed by different factors controlling groundwater chemistry.**

90. **Field photo showing an abandoned well.**

91. **Photo showing encrustation/scaling.**