CHAPTER III

SUPER EDGE-MAGIC GRAPHS

3.1 Introduction

The subject of edge-magic labelings of graphs had its origin in the work of Kotzig and Rosa [113,114] on what they called magic valuations of graphs. These labelings are currently referred to as either edge-magic labelings or edge-magic total labelings. These terms were coined by Ringel [149], and Wallis [194].

Chapter III

SUPER EDGE-MAGIC GRAPHS

It is known [149] that all caterpillars are super edge-magic. Cahit [51] showed that complete binary trees and 2-stars are super edge-magic. Figueroa-Centeno et al. [67] have proved that the galaxy \(mK_{1n} \) is super edge-magic for positive integers \(m \) and \(n \), \(n \) is odd. In [70], Figueroa-Centeno et al. showed that the forest \(P_m \cup K_{1n} \) is super edge-magic for every positive integer \(m \geq 4 \) and \(n \geq 1 \). In 1996, Ringel and Llado [149] conjectured that all trees are edge-magic. In [63], Enomoto et al. made a stronger conjecture that every tree is super edge-magic (both conjectures still remain open). J.C. Bermond [38] conjectured that all lobsters are graceful. In [7] it is given that lobsters are arithmetic.
CHAPTER III
SUPER EDGE-MAGIC GRAPHS

3.1 Introduction

The subject of edge-magic labelings of graphs had its origin in the work of Kotzig and Rosa [113,114] on what they called magic valuations of graphs. These labelings are currently referred to as either edge-magic labelings or edge-magic total labelings. These terms were coined by Ringel and Llado [149], and Wallis [194], respectively. Recently, Enomoto, Llado, Nakamigawa and Ringel [63] restricted the notion of edge-magic labelings to super edge-magic labelings of a graph.

It is known [149] that all caterpillars are super edge-magic. Cahit [51] showed that complete binary trees and 2-stars are super edge-magic. Figueroa-Centeno et al. [67] have proved that the galaxy $mK_{1,n}$ is super edge-magic for positive integers m and n, m is odd. In [70], Figueroa-Centeno et al. showed that the forest $P_m \cup K_{1,n}$ is super edge-magic for every positive integer $m \geq 4$ and $n \geq 1$. In 1996, Ringel and Llado [149] conjectured that all trees are edge-magic. In [63], Enomoto et al. made a stronger conjecture that every tree is super edge-magic (both conjectures still remain open). J.C. Bermond [38] conjectured that all lobsters are graceful. In [7] it is given that lobsters are arithmetic.
Figueroa-Centeno et al. [71] proved the following: if \(G \) is a (super) edge-magic 2-regular graph, then \(G \odot \overline{K}_n \) is (super) edge-magic for every positive integer \(n \); and the \(n \)-crown \(C_m \odot \overline{K}_n \) is super edge-magic for every two integers \(m \geq 3 \) and \(n \geq 1 \). Yegnanarayanan [203] showed that the graph obtained by introducing \(n \) new pendant edges at each vertex of the outermost \(C_3 \) in \(P_i \times C_3 \) is super edge-magic for \(t \geq 2 \). In [66] Figueroa-Centeno et al. proved that the ladder \(L_n \equiv P_n \times K_2 \) is super edge-magic for odd \(n \) and the generalized prism \(C_m \times P_n \) is super edge-magic if \(m \) is odd and \(n \geq 2 \). These two results were independently obtained by Tsuchiya and Yokomura [193] also.

Kathiresan [109] showed that \(L_n \odot K_1 \) is graceful.

Balakrishnan and Sampathkumar [28] have proved that the total graph \(T(P_n) \) is harmonious. Balakrishnan, Selvam and Yegnanarayanan [30] showed that \(T(P_n) \) is elegant.

In [63] it is proved that the complete bipartite graph \(K_{m,n} \) is super edge-magic if and only if \(m = 1 \) or \(n = 1 \). Balakrishnan et al. [28] proved that the graph \(\overline{K}_n + 2K_2 \) is magic if and only if \(n = 3 \) and harmonious if and only if \(n \) is even. Helms have been shown to be harmonious [160].

Delorme, Maheo, Thuillier, Koh and Teo [60] proved that any cycle with a chord is graceful. Xu [200] showed that all cycles with a
chord are harmonious except for C_6 in the case where the distance in C_6 between the end-vertices of the chord is 2.

Truszczyński [192] studied unicyclic graphs and proved that several classes of such graphs are graceful. He conjectured that all unicyclic graphs except C_n when $n = 1$ or $2 \pmod{4}$ are graceful. In 1996, Arumugam and Germina [10] have shown that all unicyclic graphs are indexable.

Figueroa-Centeno et al. [66,72] studied the relation between super edge-magic labelings and other classes of labelings such as sequential, harmonious, cordial, graceful and felicitous.

In this chapter we obtain some new classes of super edge-magic graphs and study the relation between super edge-magic labeling and other classes of labelings.

3.2 New classes of super edge-magic graphs

The following results on trees give support to the conjecture [63] that all trees are super edge-magic.

Theorem 3.2.1 The 3-star $S_{m,3}$ is super edge-magic if m is odd.

Proof. Suppose that m is odd. Let x denote the vertex of degree m in $S_{m,3}$ and $xu_1v_1w_i$ denote the ith path of length 3 for $1 \leq i \leq m$.

Since $S_{1,3} \cong P_4$ and paths are super edge-magic, the result is true when $m = 1$. Now suppose that m is odd and $m \geq 3$. Let $n = 3m + 1$.

Consider the vertex labeling

\[f: V(S_{m,3}) \rightarrow \{1, 2, 3, \ldots, n\} \]

such that

\[f(x) = \frac{n+2}{3} \]
\[f(u_1) = n \]

\[f(u_{2i}) = 2i \quad \text{for } 1 \leq i \leq \frac{n-4}{6} \]
\[f(u_{2i+1}) = \frac{n+5}{3} - 2i - 1 \quad \text{for } 1 \leq i \leq \frac{n-4}{6} \]
\[f(v_{2i}) = \frac{n+5}{3} + 2i - 2 \quad \text{for } 1 \leq i \leq \frac{n-4}{6} \]
\[f(v_{2i+1}) = 2i + 1 \quad \text{for } 0 \leq i \leq \frac{n-4}{6} \]
\[f(w_1) = \frac{2n+1}{3} \]
\[f(w_{2i}) = \frac{5n-2}{6} - i + 1 \quad \text{for } 1 \leq i \leq \frac{n-4}{6} \]
\[f(w_{2i+1}) = n - i \quad \text{for } 1 \leq i \leq \frac{n-4}{6} \]

Note that \(S = \{ f(x) + f(y) : xy \in E(S_{m,3}), m \geq 3 \text{ is odd} \} \)
\[= \{ \frac{n+8}{3}, \frac{n+11}{3}, \ldots, \frac{4n+2}{3} \} \]

is a set of \(n-1 \) consecutive integers.
Hence, by Lemma 1.2.2, \(f \) extends to a super edge-magic labeling of \(S_{m,3} \) with valence \(k = p + q + s = n + n - 1 + \frac{n + 8}{3} = \frac{7n + 5}{3} \) when \(m \geq 3 \) is odd.

Example Figure 3.2.1 shows the super edge-magic graph \(S_{7,3} \).
Definition 3.2.1 Let T_1 be a caterpillar obtained by putting one end-vertex at each vertex a_i of the path P_n, $1 \leq i \leq n$. Let T be the lobster formed by joining a copy of P_2 at each end-vertex b_i of T_1, $1 \leq i \leq n$.

Figure 3.2.2 shows a lobster obtained using the above construction.

Theorem 3.2.2 The lobster T defined above is super edge-magic for all integers $n \geq 3$.

Proof. We consider two cases.

Case 1 n is even
Let c_i denote the end-vertex of T at b_i, $1 \leq i \leq n$.

Define a vertex labeling $f: V(T) \to \{1, 2, 3, \ldots, 3n\}$ such that

$$f(a_i) = \begin{cases} 2n+i & \text{if } i \text{ is odd, } 1 \leq i \leq n \\ 2n+i & \text{if } i \text{ is even, } 1 \leq i \leq n \end{cases}$$

Note that $S = (f(a_i) + f(c_i) : xy \in E(T))$, n is even, $n \geq 3$.

Therefore, $S = (2n+2, 2n+1, 2n, 2n-1, \ldots, 3n-4)$.

Example. Figure 3.2.3 shows the super edge-magic labeling of the lobster with $n = 6$.
Super edge-magic graphs

\[f(a_i) = \begin{cases}
 i & \text{if } i \text{ is even}, 1 \leq i \leq n \\
 2n + i & \text{if } i \text{ is odd}, 1 \leq i \leq n
\end{cases} \]

\[f(b_i) = \begin{cases}
 i & \text{if } i \text{ is odd}, 1 \leq i \leq n \\
 2n + i & \text{if } i \text{ is even}, 1 \leq i \leq n
\end{cases} \]

\[f(c_1) = 2n \]

\[f(c_{2i+3}) = \frac{3n}{2} (1 + i) \text{ for } 0 \leq i \leq \frac{n-4}{2} \]

\[f(c_{n-2i}) = \frac{3n}{2} + i \text{ for } 0 \leq i \leq \frac{n-2}{2} \]

Note that \(S = \{ f(x) + f(y) : xy \in E(T), \text{n is even}, n \geq 3 \} \)
\[= \{ 2n-2, 2n-1, 2n, 2n+1, \ldots, 5n-4 \} \]

Therefore, by Lemma 1.2.2, \(f \) extends to a super edge-magic labeling of \(T \) with valence \(k = p + q + s = 8n-3 \).

Example Figure 3.2.3 shows the super edge-magic labeling of the lobster \(T \) with \(n = 8 \).

![Figure 3.2.3](image-url)
Case 2. \(n \) is odd

Consider the vertex labeling \(f: V(T) \to \{1, 2, 3, \ldots, 3n\} \) where

\[
\begin{align*}
 f(a_i) &= \begin{cases}
 i & \text{if } i \text{ is even, } 1 \leq i \leq n \\
 n+i & \text{if } i \text{ is odd, } 1 \leq i \leq n
 \end{cases} \\
 f(b_i) &= \begin{cases}
 i & \text{if } i \text{ is odd, } 1 \leq i \leq n \\
 n+i & \text{if } i \text{ is even, } 1 \leq i \leq n
 \end{cases}
\end{align*}
\]

\(f(c_i) = 3n \)

\(f(c_{2i+1}) = 3n - i \) for \(1 \leq i \leq \frac{n-1}{2} \); \(f(c_{n+2i+1}) = 2n + i \) for \(1 \leq i \leq \frac{n-1}{2} \)

Since \(S = \{ f(x) + f(y) : xy \in E(T) \text{, } n \text{ is odd, } n \geq 3 \} \)

\(= \{ n+2, n+3, \ldots, 4n \} \),

by Lemma 1.2.2, \(f \) extends to a super edge-magic labeling of \(T \) with valence \(k = p + q + s = 7n + 1 \).

Example Figure 3.2.4 shows the super edge-magic labeling of the lobster \(T \) with \(n = 5 \).

![Figure 3.2.4](image-url)
Definition 3.2.2 Let \(\{ \alpha_1 K_{1,n_1}, \alpha_2 K_{1,n_2}, \ldots, \alpha_p K_{1,n_p} \} \) be a family of stars where \(\alpha_i K_{1,n_i} \) denotes \(\alpha_i \) disjoint isomorphic copies of \(K_{1,n_i} \) for \(1 \leq i \leq p \) and \(\alpha_i \geq 1 \). Let \(H_{ij} \) be the \(j \)th isomorphic copy of \(K_{1,n_i} \) and \(v_{ijk} \) be the end-vertices of \(H_{ij} \), \(k = 1, 2, \ldots, n_i \). Adjoin a new vertex \(w \) which is adjacent with one end-vertex of each star. The tree thus obtained is denoted by \(H_w^{(\alpha_1 + \alpha_2 + \cdots + \alpha_p)} \). Trees of this kind are referred to as banana trees, by some authors.

Theorem 3.2.3 The banana tree \(H_w^{(\alpha_1 + \alpha_2 + \cdots + \alpha_p)} \)
corresponding to the family of stars \(\{ \alpha_1 K_{1,n_1}, \alpha_2 K_{1,n_2}, \ldots, \alpha_p K_{1,n_p} \} \),
\(1 \leq n_1 < n_2 < \cdots < n_p, p \geq 2 \) and \(\alpha_1 + \alpha_2 + \cdots + \alpha_i \leq n_i \), \(i = 1, 2, \ldots, p \),
is super edge-magic.

Proof. Consider the family of stars \(\{ \alpha_1 K_{1,n_1}, \alpha_2 K_{1,n_2}, \ldots, \alpha_p K_{1,n_p} \} \). Let \(H_{ij} \) be the \(j \)th isomorphic copy of \(K_{1,n_i} \), \(i = 1, 2, \ldots, p \). Let \(v_{ijk} \) be the end-vertices of \(H_{ij} \), \(k = 1, 2, \ldots, n_i \) and \(u_{ij} \) be the center of \(H_{ij} \).
Let \(w \) be the new vertex adjacent to one end-vertex \(v_{ij} \) from each star \(H_{ij} \) of the family where \(\beta_{ij} = \alpha_0 + \alpha_1 + \cdots + \alpha_{i-1} + j \) and \(\alpha_0 = 0 \). The new tree obtained is denoted by \(H_w^{(\alpha_1 + \alpha_2 + \cdots + \alpha_p)} \)
and has \(\alpha_1(n_1+1) + \alpha_2(n_2+1) + \cdots + \alpha_p(n_p+1) + 1 \) vertices and \(\alpha_1n_1 + \alpha_2n_2 + \cdots + \alpha_p n_p + (\alpha_1 + \alpha_2 + \cdots + \alpha_p) \) edges.
Let \(p_1 = \alpha_1(n_1 + 1) + \alpha_2(n_2 + 1) + \cdots + \alpha_p(n_p + 1) + 1 \). Define a vertex labeling \(f : V(H_w^{(a_1 + a_2 + \cdots + a_p)}) \to \{ 1, 2, \ldots, p_1 \} \) such that

\[
\begin{align*}
 f(v_{ijk}) &= (j - 1)n_1 + k \quad \text{for } 1 \leq j \leq \alpha_1, 1 \leq k \leq n_1. \\
 f(v_{ijk}) &= f(v_{i-1a_i-1n_i-1}) + (j - 1)n_i + k \quad \text{for } 2 \leq i \leq p, 1 \leq j \leq \alpha_i, 1 \leq k \leq n_i. \\
 f(w) &= f(v_{p\alpha_pn_p}) + 1. \\
 f(u_{ij}) &= f(w) + (\alpha_0 + \alpha_1 + \cdots + \alpha_{i-1} + j), \quad 1 \leq i \leq p, 1 \leq j \leq \alpha_i.
\end{align*}
\]

Note that

\[
S = \{ \alpha_1n_1 + \alpha_2n_2 + \cdots + \alpha_pn_p + 2, \alpha_1n_1 + \alpha_2n_2 + \cdots + \alpha_pn_p + 3, \ldots, 2(\alpha_1n_1 + \alpha_2n_2 + \cdots + \alpha_pn_p) + (\alpha_1 + \alpha_2 + \cdots + \alpha_p) + 1 \}.
\]

Hence, by Lemma 1.2.2, \(f \) extends to a super edge-magic labeling of \(H_w^{(a_1 + a_2 + \cdots + a_p)} \) with valence

\[
k = p + q + s = 3(\alpha_1n_1 + \alpha_2n_2 + \cdots + \alpha_pn_p) + 2(\alpha_1 + \alpha_2 + \cdots + \alpha_p) + 3. \quad \Box
\]

Example Figure 3.2.5 shows the graph \(H_w^{(2 + 2 + 1)} \) and Figure 3.2.6 shows the super edge-magic labeling of the graph \(H_w^{(2 + 2 + 1)} \).
Super edge-magic graphs

Figure 3.2.5
Super edge-magic graphs

Definition 3.2.3 A graph $G(t, m) = P_{t} \coprod C_{2m - 1}$ where $=$
stands for the path on t vertices $(t \geq 2)$ with an
odd cycle. Obtain $G(t, m, n)$ by introducing a new
pendant edges at each of the outermost odd cycle
in $G(t, m)$.

Theorem 3.2.4 For $n \geq 2$ the graph $G(t, m, n)$ is super
edge-magic.

Proof. Let v_{1} be a vertex of the innermost $C_{2m - 1}$ and v_{2} be
the other vertices of the cycle taken in the clockwise
direction. For $2 \leq i \leq t$, let v_{2i} be the vertex of the i^{th} copy of
$C_{2m - 1}$ adjacent to the vertex v_{1} in the $(i - 1)^{th}$ copy
$C_{2m - 1}$ and take the other vertex v_{2i} as the clockwise vertex of the first
copy of $C_{2m - 1}$ adjacent to the vertex v_{1} of the outermost cycle.

Consider the vertex labeling

\[f: V(G(t, m, n)) \rightarrow \{1, 2, \ldots, (t+1)(n+1)\} \]

such that

\[f(v_{1}) = 1 \]

\[f(v_{2i}) = \begin{cases} \frac{j+2}{2} & \text{if } j \text{ is odd} \\ \frac{j-2}{2} & \text{if } j \text{ is even} \end{cases} \]

for $1 \leq i \leq t$ and $1 \leq j \leq (2m - 1)$.

Figure 3.2.6
Definition 3.2.3 Consider the graph $G(t,m) = P_t \times C_{2m+1}$ where \times stands for the cartesian product of a path on t vertices ($t \geq 2$) with an odd cycle. Obtain a new graph $G(t,m,n)$ by introducing n new pendant edges at each vertex of the outermost odd cycle in $G(t,m)$.

Theorem 3.2.4 For $t \geq 2$ and $m \geq 2$ the graph $G(t,m,n)$ is super edge-magic.

Proof. Let v_{11} be any fixed vertex of the innermost C_{2m+1} and $v_{12}, v_{13}, \ldots, v_{1(2m+1)}$ be the other vertices of the cycle taken in the clockwise direction. For $2 \leq i \leq t$, let v_{i1} be the vertex of the i^{th} copy of C_{2m+1} adjacent to the vertex $v_{(i-1)(2m+1)}$ in the $(i-1)^{th}$ copy of C_{2m+1} and take the other vertices v_{ij} in the clockwise direction as in the first copy of C_{2m+1}. Let v_{tjk} denote the pendant vertex adjacent to the vertex v_{tj} of the outermost C_{2m+1} for $1 \leq k \leq n$ and $1 \leq j \leq (2m+1)$.

Consider the vertex labeling

$$f: V(G(t,m,n)) \rightarrow \{1, 2, \ldots, (2m+1)(t+n)\}$$

such that

$$f(v_{ij}) = \begin{cases}
(i-1)(2m+1) + \frac{j+1}{2} & \text{if } j \text{ is odd} \\
(i-1)(2m+1) + m + \frac{j+2}{2} & \text{if } j \text{ is even}
\end{cases}$$

for $1 \leq i \leq t$ and $1 \leq j \leq (2m+1)$ and
\[f(u_{jk}) = (2m + 1) (t + k - 1) + (2m + 2 - j) \text{ for } 1 \leq j \leq (2m + 1) \text{ and } 1 \leq k \leq n. \]

Note that \(S = \{ f(x) + f(y) : xy \in E(G(t,m,n)), t \geq 2, m \geq 2 \} \)
\[= \{ m + 2, m + 3, \ldots, (m + 1) + (2m + 1) (2t + n - 1) \} \]

is a set of consecutive integers and hence, by Lemma 1.2.2, \(f \) extends to a super edge-magic labeling of \(G(t,m,n) \) with valence \(k = p + q + s = (2m + 1) (3t + 2n - 1) + m + 2 \), for \(t \geq 2 \) and \(m \geq 2 \).

Example Figure 3.2.7 shows the super edge-magic labeling of the graph \(G(3,2,2) \).

\[f(v) = \begin{cases} \frac{n+1}{2} & \text{if } i \text{ is even} \\ m + \frac{i}{2} & \text{if } i \text{ is odd} \end{cases} \]

\[f(u_{jk}) = \begin{cases} \frac{15n+2}{2} & \text{if } i \text{ is even} \\ 16m + 4n + 1 & \text{if } i \text{ is odd} \end{cases} \]

Figure 3.2.7
Theorem 3.2.5 The graph $C_n \odot P_2$ is super edge-magic for all odd $n \geq 3$.

Proof. Let n be an odd integer and $n = 2m + 1 \geq 3$. Let v_1, v_2, \ldots, v_n be the vertices of the cycle C_n. Now $C_n \odot P_2$ is the graph obtained by attaching P_2 to each vertex of C_n. Let $a_i, b_i, 1 \leq i \leq n$ be the vertices adjacent to the rim vertices v_i of C_n in $C_n \odot P_2$. The graph $C_n \odot P_2$ has $3n$ vertices and $4n$ edges. Define a vertex labeling

$$f: V(C_n \odot P_2) \to \{1, 2, \ldots, 3n\}$$

such that

$$f(v_i) = \begin{cases}
\frac{i+1}{2} & \text{if } i \text{ is odd} \\
 2n + m + \frac{i+2}{2} & \text{if } i \text{ is even}
\end{cases}$$

$$f(a_i) = 2n + 1 - i \quad \text{for } 1 \leq i \leq n$$

$$f(b_{2i}) = 2n + i \quad \text{for } 1 \leq i \leq m$$

$$f(b_1) = 2n + m + 1$$

$$f(b_{2i+1}) = 2n + m + 1 + i \quad \text{for } 1 \leq i \leq m$$

It is easy to see that

$$S = \{f(x) + f(y) : xy \in E(C_n \odot P_2)\} = \{m + 2, m + 3, \ldots, m + 4n + 1\}$$

is a set of $4n$ consecutive integers. Hence, by Lemma 1.2.2, f extends to a super edge-magic labeling of $C_n \odot P_2$ with valence

$$k = p + q + s = \frac{15n + 3}{2}, \text{ when } n \geq 3 \text{ is odd.} \quad \square$$
Example Figure 3.2.8 shows the super edge-magic labeling of the graph $C_s \odot P_2$.

Theorem 3.2.6 The graph $C_n \odot P_3$ is super edge-magic for all odd $n \geq 3$.

Proof. Let C_n be an odd cycle with $n = 2m + 1 \geq 3$ vertices. Let v_1, v_2, \ldots, v_n be the vertices of the cycle C_n. Let P_3 be a path on three vertices. Now $C_n \odot P_3$ is the graph obtained by attaching P_3 to each vertex of C_n and it has $4n$ vertices and $6n$ edges.
Define a vertex labeling $f: V(C_n \odot P_3) \to \{1, 2, \ldots, 4n\}$ such that

$$f(v_i) = \begin{cases}
\frac{i+1}{2} & \text{if } i \text{ is odd} \\
\frac{m+\frac{i+2}{2}}{2} & \text{if } i \text{ is even}
\end{cases}$$

Since n is odd, there are exactly m even f-values and $m + 1$ odd f-values for the rim vertices. Let us label the $3n$ vertices outside the rim of C_n in $C_n \odot P_3$ as follows. Let u_1, u_2, \ldots, u_m be the vertices of degree two outside the rim, adjacent to the rim vertices whose f-values are $2m, 2m - 2, \ldots, 4, 2$ respectively. Again let $u_{n+1}, u_{n+2}, \ldots, u_{n+m}$ be the remaining vertices of degree two, adjacent to the rim vertices whose f-values are $2m, 2m - 2, \ldots, 4, 2$ respectively.

Let $u_{m+1}, u_{m+2}, \ldots, u_n$ be the vertices of degree two outside the rim, adjacent to the rim vertices whose f-values are $n, n - 2, \ldots, 3, 1$ respectively. Also let $u_{n+m+1}, u_{n+m+2}, \ldots, u_{2n}$ be the remaining vertices of degree two outside the rim, adjacent to the rim vertices whose f-values are $n, n - 2, \ldots, 3, 1$ respectively. Let $u_{2n+1}, u_{2n+2}, \ldots, u_{2n+m+1}$ be the vertices of degree three outside the rim adjacent to the rim vertices whose f-values are $n, n - 2, \ldots, 3, 1$ respectively. Finally, let $u_{2n+m+2}, u_{2n+m+3}, \ldots, u_{3n}$ be the vertices of degree three adjacent to the rim vertices whose f-values are $2m, 2m - 2, \ldots, 4, 2$ respectively.

Now define $f(u_i) = n + i$ for $1 \leq i \leq 3n$.
Note that \(S = \{ f(x) + f(y) : xy \in E(C_n \odot P_3) \} = \{ m + 2, m + 3, \ldots, m + 6n + 1 \} \) is a set of consecutive integers.

Hence, by Lemma 1.2.2, \(f \) extends to a super edge-magic labeling of \(C_n \odot P_3 \) with valence \(k = p + q + s = \frac{21n + 3}{2} \).

Example Figure 3.2.9 shows the super edge-magic labeling of the graph \(C_7 \odot P_3 \).

Figure 3.2.9
Definition 3.2.4 Let L_n denote the ladder graph $P_n \times P_2$ and $L_n \odot K_1$ be the graph obtained by adjoining an edge at each vertex of L_n.

Theorem 3.2.7 The graph $L_n \odot K_1$ is super edge-magic for odd n.

Proof. Let $V(L_n) = \{ u_1, u_2, \ldots, u_n; v_1, v_2, \ldots, v_n \}$ and $E(L_n) = \{ u_iu_{i+1}, v_iv_{i+1}, u_jv_j, 1 \leq i \leq (n-1), 1 \leq j \leq n \}$.

Let u^1_i and v^1_i be the vertices adjacent to u_i and v_i respectively in $L_n \odot K_1$. Then $V(L_n \odot K_1) = \{ u_i, v_i, u^1_i, v^1_i : 1 \leq i \leq n \}$ and $E(L_n \odot K_1) = \{ u_iu_{i+1}, v_iv_{i+1}, u_jv_j, u^1_jv^1_j, 1 \leq i \leq (n-1), 1 \leq j \leq n \}$.

The graph $L_n \odot K_1$ has $4n$ vertices and $5n - 2$ edges. Consider the vertex labeling $f: V(L_n \odot K_1) \to \{ 1, 2, \ldots, 4n \}$ where
A super edge-magic labeling of $L_n \otimes K_1$ is given by the function $f(x)$:

$$f(x) = \begin{cases} \frac{4n+i+1}{2} & \text{if } x = u_i, \text{ } i \text{ odd and } 1 \leq i \leq n \\ \frac{5n+i+1}{2} & \text{if } x = u_i, \text{ } i \text{ even and } 1 \leq i \leq n \\ \frac{3n+i}{2} & \text{if } x = v_i, \text{ } i \text{ odd and } 1 \leq i \leq n \\ \frac{2n+i}{2} & \text{if } x = v_i, \text{ } i \text{ even and } 1 \leq i \leq n \\ n & \text{if } x = v_1^1 \\ \frac{7n+1}{2} & \text{if } x = v_2^1 \\ i & \text{if } x = u_{2i+1}^1, \text{ } 1 \leq i \leq \left(\frac{n-1}{2}\right) \\ \frac{n+2i-1}{2} & \text{if } x = v_{2i}^1, \text{ } 2 \leq i \leq \left(\frac{n-1}{2}\right) \\ \frac{7n+2i+1}{2} & \text{if } x = u_{2i-1}^1, \text{ } 1 \leq i \leq \left(\frac{n-1}{2}\right) \\ \frac{3n+1+i}{2} & \text{if } x = u_{2i}^1, \text{ } 1 \leq i \leq \left(\frac{n-3}{2}\right) \\ \frac{n+1}{2} & \text{if } x = u_{n-1}^1 \\ 3n+1 & \text{if } x = u_n^1 \end{cases}$$

Note that

$$S = \{ f(x) + f(y) : xy \in E(L_n \otimes K_1) \} = \left\{ \frac{3n+5}{2}, \frac{3n+7}{2}, ..., \frac{13n-1}{2} \right\}$$

is a set of consecutive integers. Hence, by Lemma 1.2.2, f extends to a super edge-magic labeling of $L_n \otimes K_1$ with valence.
k = \frac{21n + 1}{2}, \text{ for all odd } n.

Example Figure 3.2.10 gives the super edge-magic labeling of \(L_5 \odot K_1 \).

Proof. Let \(u_i \) denote the path \(u_j, e_j \) for all \(j \) such that \(u_j, e_j \) for \(1 \leq j \leq (n - 1) \). The vertex set and edge set of \(T(P_n) \) are defined as follows:

\[
V(T(P_n)) = \{ u_i, e_j : 1 \leq i \leq (n - 1) \}.
\]

\[
E(T(P_n)) = \{ u_i, e_j, u_i, e_j, e_j, e_j : 1 \leq i \leq (n - 1) \}.
\]

Note that \(T(P_n) \) has \(q = 2p - 3 \). Now consider the vertex labeling:

\[
f : V(T(P_n)) \to \{ 1, 2, \ldots, (2n - 1) \}
\]

such that \(f(u_i) = 2i - 1 \) for \(1 \leq i \leq (n - 1) \) and \(f(e_j) = 2j \) for \(1 \leq j \leq (n - 1) \).

It follows that \(S = \{ f(x) + f(xy) : e_j \in E(T(P_n)) \} = \{ 3, 4, \ldots, (4n - 3) \} \) is a set of consecutive integers. Therefore, by Lemma 1.2.2, \(f \) extends to a super edge-magic labeling of \(T(P_n) \). \qed

Example Figure 3.2.11 shows the super edge-magic labeling of the graph \(T(P_n) \).

By Lemma 1.2.1, if \(G \) is a super edge-magic \((p, q) \)-graph then

\[q \leq 2p - 3. \]

Next theorem gives a super edge-magic graph with \(q = 2p - 3 \).
Theorem 3.2.8 The total graph $T(P_n)$ is super edge-magic for any positive integer n.

Proof. Let P_n denote the path $u_1u_2\cdots u_n$ and e_j denote the edge u_ju_{j+1} for $1 \leq j \leq (n-1)$. The vertex set and edge set of $T(P_n)$ are defined as follows.

$$V(T(P_n)) = \{ u_i, e_j : 1 \leq i \leq n, 1 \leq j \leq (n-1) \}$$ and

$$E(T(P_n)) = \{ u_iu_{i+1}, e_je_{j+1}, u_ie_i, e_{i-1}u_{i+1} : 1 \leq i \leq (n-1), 1 \leq j \leq (n-2) \}.$$

Note that $T(P_n)$ has $2n-1$ vertices and $4n-5$ edges so that $q = 2p - 3$.

Now consider the vertex labeling $f : V(T(P_n)) \rightarrow \{ 1, 2, \ldots, (2n-1) \}$ such that

$$f(u_i) = 2i - 1 \text{ for } 1 \leq i \leq n, \quad f(e_i) = 2i \text{ for } 1 \leq i \leq (n-1).$$

It follows that $S = \{ f(x) + f(y) : xy \in E(T(P_n)) \} = \{ 3, 4, \ldots, (4n-3) \}$ is a set of consecutive integers. Therefore, by Lemma 1.2.2, f extends to a super edge-magic labeling of $T(P_n)$ with valence $k = 6n - 3$. \qed

Example Figure 3.2.11 shows the super edge-magic labeling of the graph $T(P_4)$.

![Figure 3.2.11](image-url)
Theorem 3.2.9 The graph $K_n + 2K_2$ is not super edge-magic.

Proof. The graph $K_n + 2K_2$ has $n + 4$ vertices and $4n + 2$ edges. Thus, $p = n + 4$, $q = 4n + 2$, $2p - 3 = 2n + 5$ and $q > 2p - 3$ if $n \geq 2$. Hence by Lemma 1.2.1, $K_n + 2K_2$ is not super edge-magic if $n \geq 2$.

Note that the graph $K_1 + 2K_2 = T_2$, the friendship graph with two triangles. But by Lemma 1.2.3, the friendship graph with m triangles, T_m is super edge-magic if and only if $3 \leq m \leq 5$ and $m = 7$. Hence $K_1 + 2K_2$ is not super edge-magic. This completes the proof of the theorem. □

Theorem 3.2.10 The graph consisting of a cycle C_n with a chord joining two vertices at a distance 3 is super edge-magic for all odd n, $n \geq 7$.

Proof. Let G be the graph consisting of a cycle C_n with a chord joining two vertices of C_n ($n \geq 7$) at a distance 3.

Let $V(G) = \{ v_1, v_2, \ldots, v_n \}$. Next join the vertices v_1 and v_{n-2} as a chord for G so that $d(v_1, v_{n-2}) = 3$. Note that G has n vertices and $n + 1$ edges. Consider the vertex labeling $f : V(G) \rightarrow \{ 1, 2, \ldots, n \}$ such that

$$f(v_i) = \begin{cases}
\frac{i + 1}{2} & \text{if } i \text{ is odd} \\
n + i + 1 & \text{if } i \text{ is even}
\end{cases}$$
Note that

\[S = \{ f(x) + f(y) : xy \in E(G) \} = \{ \frac{n+1}{2}, \frac{n+3}{2}, \ldots, \frac{3n+1}{2} \} \]

is a set of consecutive integers.

Hence, by Lemma 1.2.2, \(f \) is a super edge-magic labeling of \(G \) with valence \(k = p + q + s = \frac{5n+3}{2} \).

Example Figure 3.2.12 shows the super edge-magic labeling of the cycle \(C_7 \) with a chord.

\[s_i = \min \{ S_i \}, \text{ where } S_i = \{ f_i(x) + f_i(y) : xy \in E(G_i) \}. \]

It is easy to see that \(s_i, s_{i+1}, \ldots, s_{i+q}, \ldots \) are \(q \) consecutive integers.

Hence, by Lemma 1.2.2, we extend to a super edge-magic labeling of \(G \) with valence \(k = q + s_i \).

Example Figures 3.2.13 and 3.2.14 show the super edge-magic labeling of \(G_1 \) and \(G \) respectively.

Theorem 3.2.11 Let \(G_1 \) be a super edge-magic unicyclic graph and \(G_2 = K_{1,n} \) with \(V(K_{1,n}) = \{ v, u_1, u_2, \ldots, u_n \} \) and \(E(K_{1,n}) = \{ vu_i \mid 1 \leq i \leq n \} \).

Let \(G \) be the graph obtained by joining \(u_1 \) to all the vertices of \(G_1 \).

Then \(G \) is a super edge-magic graph.
Proof. Suppose that G_1 has p_1 vertices and q_1 edges. Let $f_1: V(G_1) \to \{1, 2, \ldots, p_1\}$ be a super edge-magic labeling of G_1.

Note that G is a (p, q) graph with $p = p_1 + n + 1$ and $q = q_1 + p_1 + n$.

Define a vertex labeling $f: V(G) \to \{1, 2, \ldots, p\}$ such that

- $f(x_i) = f_1(x_i)$ if $x_i \in V(G_1)$
- $f(v) = p_1 + 1$
- $f(u_i) = p_1 + 1 + i$, $1 \leq i \leq n$.

Let $s_i = \min(S_i)$ where $S_i = \{f_1(x) + f_1(y) : x y \in E(G_1)\}$.

It is easy to see that $S = \{f(x) + f(y) : x y \in E(G)\} = \{s_1, s_1 + 1, \ldots, s_1 + q_1, \ldots, s_1 + q - 1\}$ is a set of q consecutive integers.

Hence, by Lemma 1.2.2, f extends to a super edge-magic labeling of G with valence $k = p + q + s_1$.

Example Figure 3.2.13 and Figure 3.2.14 show the super edge-magic labeling of G_1 and G respectively.

Theorem 3.2.12 Let G_1, G_2, \ldots, G_m be m disjoint n-cycles having vertex sets $V_i = \{v_i^1, v_i^2, \ldots, v_i^n\}$, $1 \leq i \leq m$, where n is odd and $n \geq 3$. Let G be the graph obtained by joining v_i^1 to v_j^1, $1 \leq j \leq n$ and v_i^k to v_j^{k+1}, $1 \leq k \leq n - 1$. Then G is a super edge-magic graph.

Proof. The graph G has mn vertices and $n(2m - 1)$ edges.
Theorem 3.2.12 Let G_1, G_2, \ldots, G_m be m disjoint n-cycles having vertex sets $V_i = \{ v_1^i, v_2^i, \ldots, v_n^i \}$, $i = 1, 2, \ldots, m$, where n is odd and $n \geq 3$. Let G be the graph obtained by joining v_n^1 to v_j^2, $1 \leq j \leq n$ and v_n^k to v_j^{k+1}, $1 \leq j \leq n$, $2 \leq k \leq (m - 1)$. Then G is a super edge-magic graph.

Proof. The graph G has mn vertices and $n(2m-1)$ edges.
Define a vertex labeling \(f: V(G) \rightarrow \{1, 2, ..., mn\} \) such that

\[
f(v_i) = \begin{cases}
\frac{i+1}{2} & \text{if } i \text{ is odd, } 1 \leq i \leq n \\
\frac{n+1+i}{2} & \text{if } i \text{ is even, } 1 \leq i \leq n
\end{cases}
\]

\[
f(v_r') = 5r-4 \quad \text{if } 2 \leq r \leq m
\]

\[
f(v_i') = \begin{cases}
f(v_i') + \frac{i-1}{2} & \text{if } i \text{ is odd, } 2 \leq i \leq n, 2 \leq r \leq m \\
f(v_r') + \frac{i}{2} & \text{if } i \text{ is even, } 2 \leq i \leq n, 2 \leq r \leq m
\end{cases}
\]

It is easy to see that \(S = \{ f(x) + f(y) : xy \in E(G) \} \)

\[
= \left\{ \frac{n+3}{2}, \frac{n+5}{2}, ..., n+10m-7 \right\}
\]

is a set of \(n(2m-1) \) consecutive integers. Hence, by Lemma 1.2.2, \(f \) extends to a super edge-magic labeling of \(G \) with valence

\[
k = p + q + s = \frac{6mn-n+3}{2}.
\]

Example Figure 3.2.15 shows the super edge-magic labeling of the graph \(G \) with \(n = 5 \) and \(m = 4 \).
Figure 3.2.15
3.3 Some general results on super edge-magic graphs

In this section we first study the relation between super edge-magic graphs and strongly indexable graphs.

Theorem 3.3.1 Every strongly indexable graph is super edge-magic.

Proof. Let f be a strong indexer of the (p, q) graph G.

Then $\{ f(u) + f(v) : uv \in E(G) \} = \{ 1, 2, 3, \ldots, q \}$.

Now, define $g : V(G) \rightarrow \{ 1, 2, \ldots, p \}$ to be the bijection such that $g(v) = f(v) + 1$ for each vertex v of G. Then,

$\{ g(u) + g(v) : uv \in E(G) \} = \{ f(u) + f(v) + 2 : uv \in E(G) \} = \{ 3, 4, 5, \ldots, q + 2 \}$. By Lemma 1.2.2, it follows that g extends to a super edge-magic labeling of G with valence $k = p + q + 3$.

Theorem 3.3.2 Let G be a super edge-magic graph and f be a super edge magic labeling of G. Then G is strongly indexable if the valence of f is $k = p + q + 3$.

Proof. Let f be a super edge-magic labeling of G with valence $k = p + q + 3$. Then, by Lemma 1.2.2, we get

$$S = \{ f(u) + f(v) : uv \in E(G) \}$$

$$= \{ k - (p + 1), k - (p + 2), \ldots, k - (p + q) \}$$

$$= \{ 3, 4, 5, \ldots, (q + 2) \}.$$ Define a function $g : V(G) \rightarrow \{ 0, 1, 2, \ldots, (p - 1) \}$ to be the bijection such that $g(v) = f(v) - 1$ for each vertex v of G. Then,
Super edge-magic graphs

Since the degree of every vertex of an Eulerian graph is even, we get

\[\{ g(u) + g(v) : uv \in E(G) \} = \{ f(u) + f(v) - 2 : uv \in E(G) \} = \{ 1, 2, \ldots, q \}. \]

Hence, \(g \) is a strong indexer of \(G \).

Lemma 1.2.5 establishes the relationship between a super edge-magic graph and a felicitous graph.

In view of the above result we state the next theorem.

Theorem 3.3.3 If \(G \) is a strongly indexable \((p, q)\)-graph with \(q \geq p - 1 \), then \(G \) is felicitous.

Proof. Follows from Theorem 3.3.1 and Lemma 1.2.5.

Theorem 3.3.4 If \(f \) is a super edge-magic labeling of an Eulerian \((p, q)\)-graph \(G \) then, \(q(q + 2s - 1) = 0 \pmod{4} \), where \(s = \min\{ f(x) + f(y) : xy \in E(G) \} \).

Proof. Let \(f \) be a super edge-magic labeling of the Eulerian \((p, q)\)-graph \(G \). Then, by Lemma 1.2.2, the set

\[S = \{ f(x) + f(y) : xy \in E(G) \} \]

consists of \(q \) consecutive integers and valence of \(f \) is \(k = p + q + s \). Hence,

\[\sum_{v \in V(G)} f(v) d(v) = \sum_{z \in S} z = qk - qp - \frac{q(q + 1)}{2} = q(k - p) - \frac{q(q + 1)}{2} \]

\[= q(q + s) - \frac{q(q + 1)}{2} = \frac{2q(q + s) - q(q + 1)}{2} \]

\[= \frac{q(q + 2s - 1)}{2}. \]
Since the degree of every vertex of an eulerian graph is even, we get
\[\frac{q(q + 2s - 1)}{2} \] is even. Therefore, \(q(q + 2s - 1) \) is a multiple of 4.

Theorem 3.3.5 If \(G \) is a connected super edge-magic \((p, q) \)-graph then, \(s \leq p + 1 \) for any super edge-magic labeling \(f \) of \(G \) where \(s = \min\{ f(u) + f(v) : uv \in E(G) \} \).

Proof. Let \(G \) be a connected super edge-magic graph and \(f \) be a super edge-magic labeling of \(G \) with \(s = \min\{ f(u) + f(v) : uv \in E(G) \} \). Then, \(s = \{ f(u) + f(v) : uv \in E(G) \} = \{ s, s + 1, s + 2, \ldots , s + q - 1 \} \).

Since \(f : V (G) \rightarrow \{ 1, 2, \ldots , p \} \), \(s + q - 1 \leq 2p - 1 \) and we get \(s + q \leq 2p \). If \(s \geq p + 2 \), then \(p + 2 + q \leq 2p \) so that \(q \leq p - 2 \). This is a contradiction to the connectedness of \(G \). This completes the proof of the theorem.

Corollary 3.3.1 The upperbound given by Theorem 3.3.5 is sharp.

Proof. To see this, consider the star \(K_{1,n} \). Let \(v \) be the central vertex and \(v_1, v_2, \ldots , v_n \) be the end-vertices of \(K_{1,n} \).

Consider the function \(f : V (K_{1,n}) \rightarrow \{ 1, 2, \ldots , n + 1 \} \) such that \(f(v) = n + 1 \), \(f(v_i) = i, \ 1 \leq i \leq n \).
Note that \(S = \{ f(u) + f(v) : uv \in E(K_{1,n}) \} \)

\[
= \{ n + 2, n + 3, \ldots, (2n + 1) \} \text{ is a set of } n \text{ consecutive integers. Therefore, by Lemma 1.2.2, } f \text{ extends to a super edge-magic labeling of } K_{1,n} \text{ and } s = n + 2 = p + 1.
\]

Theorem 3.3.6 Let \(G \) be a \((p, q)\)-graph and \(f \) be a super edge-magic labeling of \(G \) with valence \(k \). Then,

\[
\frac{1}{2q} [(\Delta-1)p(p+1)+(p+q(p+q+1)) \leq k \leq \frac{1}{2q} [(\Delta-1)p(p+1)+(p+q(p+q+1)]
\]

Proof. Since \(k \) is the valence of \(f \), \(f(u) + f(v) + f(uv) = k \) for every edge \(uv \in E(G) \). Now, adding all the constants obtained at each edge of \(G \), we get

\[
qk = \sum_{u \in V(G)} f(u)d(u) + \sum_{u \in E(G)} f(u)
\]

\[
\leq \Delta \sum_{u \in V(G)} f(u) + \sum_{u \in E(G)} f(u)
\]

\[
= (\Delta - 1) \sum_{u \in V(G)} f(u) + \sum_{u \in E(G)} f(u)
\]

\[
= (\Delta - 1) \frac{p(p+1)}{2} + [1 + 2 + 3 + \ldots + (p + q)]
\]

\[
= (\Delta - 1) \frac{p(p+1)}{2} + \frac{(p + q)(p + q + 1)}{2}
\]

\[
= \frac{1}{2} [(\Delta - 1)p(p+1) + (p + q)(p + q + 1)]
\]
Therefore, \(k \leq \frac{1}{2q} [(\Delta - 1)p(p + 1) + (p + q)(p + q + 1)] \). By a similar argument with \(\Delta \) replaced by \(\delta \) and \(\leq \) by \(\geq \) we get

\[
k \geq \frac{1}{2q} [(\delta - 1)p(p + 1) + (p + q)(p + q + 1)]
\]

and the proof is complete.

\[\square\]

Corollary 3.3.2 If \(f \) is a super edge-magic labeling of an \(r \)-regular \((p, q)\)-graph \(G \) with valence \(k \), then

\[
k = \frac{1}{2q} [(r - 1)p(p + 1) + (p + q)(p + q + 1)]
\]

Proof. Apply Theorem 3.3.6 with \(\delta = \Delta = r \).

\[\square\]