Chapter 2

Preliminaries

In this chapter, we introduce the notion of distances which are useful in the subsequent chapters. For more information, we refer toHarary [10].

Definition 1.1

A graph \(G = (V, E) \) is a finite set \(V \) of vertices, together with a set \(E \) of edges, a pair of vertices \(u, v \) is called adjacent if \(u, v \in V \) and there is an edge \(uv \in E \). A graph \(G \) is connected if for any pair \(u, v \) of \(G \) there is a path from \(u \) to \(v \).

Definition 1.2

The degree of a vertex \(v \) in \(G \) is the number of edges \(v \) is incident to, denoted \(\deg(v) \). A simple graph \(G \) contains an isolated vertex if a vertex of degree 0 is contained in \(G \). A graph \(G \) has no isolated vertices if each vertex of \(G \) is adjacent to a non-empty number of other vertices of \(G \).
Chapter - 1

Preliminaries

Abstract

In this chapter, we discuss the basic definitions and some theorems which are useful in the subsequent chapters. For graph theoretic terminology we refer to Hararry [10].

Definition 1.1.

A graph \(G = (V, E) \) is a finite non-empty set \(V = V(G) \) of \(p \) points (vertices) together with a prescribed set \(E = E(G) \) of \(q \) unordered pairs of distinct points of \(V \). Each pair \(e = \{u, v\} \) of points is a line (edge) of \(G \) and \(e \) is said to be join \(u \) and \(v \). We write \(e = uv \) and say that \(u \) and \(v \) are adjacent points (vertices). If two distinct lines (edges) are incident with a common point, then they are adjacent lines (edges). A graph with \(p \) points and \(q \) lines is called a \((p, q)\)-graph. The \((1,0)\)-graph is trivial.

Definition 1.2.

The degree of a vertex \(v \) in a graph \(G \) is the number of edges of \(G \) incident with \(v \) and is denoted by \(\text{deg} (v) \). A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called an end vertex or a pendant vertex of \(G \). Any vertex which is adjacent to a pendant vertex is called a support.
Theorem 1.3. [10] For a \((p, q)\)-graph, \(\sum_{i=1}^{p} \deg(v_i) = 2q\).

Remark 1.4.

If \(G\) is a \((p, q)\) - graph, then \(0 \leq \deg(v) \leq p - 1\), for any vertex \(v\). The minimum and maximum degrees of vertices of \(G\) are denoted by \(\delta(G)\) and \(\Delta(G)\) respectively.

Definition 1.5.

A graph \(G\) is regular of degree \(r\) if every vertex of \(G\) has degree \(r\). Such graphs are called \(r\)-regular graphs. A 3-regular graph is called a cubic graph.

Definition 1.6.

A graph is complete if every two of its vertices are adjacent. A complete \((p, q)\)-graph is therefore a regular graph of degree \(p - 1\) having \(q = \frac{p(p - 1)}{2}\) edges. We denote this graph by \(K_p\).

Definition 1.7.

A sub graph \(H\) of a graph \(G\) is a graph having all its points and lines in \(G\). A spanning sub graph of \(G\) is a sub graph containing all the points of \(G\). For any set \(S\) of points of \(G\), the induced sub graph \(\langle S \rangle\) is the maximal sub graph of \(G\) with point set \(S\).

Definition 1.8.

A clique of a graph \(G\) is a maximal complete sub graph of \(G\). The clique number of \(G\) is the order of the maximal complete sub graph and is denoted by \(\omega(G)\).
Definition 1.9.
A graph without any edges is called a null graph or an empty graph.

Definition 1.10.
Two graphs G_1 and G_2 are isomorphic if there exists a one-to-one correspondence between their point sets which preserves adjacency. That is, there exists a bijection $\Phi : V(G_1) \rightarrow V(G_2)$ such that $uv \in E(G_1) \iff \Phi(u)\Phi(v) \in E(G_2)$.

Definition 1.11.
The complement G^c or \overline{G} of a graph G also has $V(G)$ as vertex set, but two vertices are adjacent in G^c if and only if they are not adjacent in G. A self-complementary graph is a graph which is isomorphic with its complement.

Definition 1.12.
A bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V_1 and V_2 such that every line of G joins V_1 with V_2. If G contains every line joining V_1 and V_2, then G is a complete bipartite graph. If $|V_1| = m, |V_2| = n$ then the complete bipartite graph is denoted by $K_{m,n}$. The complete bipartite graph $K_{1,n}$ is called a star. The vertex of degree n is called its centre. The graph obtained by joining the centers of two stars $K_{1,r}$ and $K_{1,s}$ by an edge is defined to be a bistar and is denoted by $B(r, s)$.
Definition 1.13.

A complete multipartite graph $K_{n_1, n_2, \ldots, n_m}$ is the graph with vertex set $V = V_1 \cup V_2 \cup \ldots \cup V_m$, where $|V_i| = n_i$ for $1 \leq i \leq m$, $\{u, v\} \subseteq V_i$ implies u and v are non-adjacent and $u \in V_i$ and $v \in V_j$ with $i \neq j$ implies u and v are adjacent.

Definition 1.14.

Let u and v be (not necessarily distinct) vertices of a graph G. A u-v walk of G is a finite alternating sequence $u = u_0e_1u_1e_2\ldots u_{n-1}e_nu_n = v$ of vertices and edges beginning with vertex u and ending with vertex v such that $e_i = u_{i-1}u_i$ for $i = 1, 2, \ldots, n$. The number n is called the length of a walk. A walk $u_0e_1u_1e_2\ldots u_{n-1}e_nu_n$ is determined by the sequence $u_0u_1\ldots u_{n-1}u_n$ of its vertices and hence we specify a walk simply by $(u_0u_1\ldots u_{n-1}u_n)$. A walk in which all the vertices are distinct is called a path. A walk $(u_0u_1\ldots u_{n-1}u_n)$ is called a closed walk if $u_0 = u_n$. A closed walk in which $u_0, u_1, u_2, \ldots, u_{n-1}$ are distinct is called a cycle. A path on p vertices is denoted by P_p and a cycle on p vertices is denoted by C_p.

Definition 1.15.

A graph G is said to be connected if any two vertices of G are joined by a path. A maximal connected sub graph of G is called a component of G. Thus a disconnected graph has at least two components.
Definition 1.16.

The distance \(d(u,v)\) between two vertices \(u\) and \(v\) is the smallest number of edges in a path between \(u\) and \(v\) in \(G\) if it exists. The eccentricity, \(e(u)\), of a vertex \(u\) is the largest distance from \(u\) to any vertex of \(G\). The radius of \(G\) is \(\min\{e(u) : u \in V(G)\}\) and the diameter of \(G\) is \(\max\{e(u) : u \in V(G)\}\).

Definition 1.17.

A graph \(G\) is called acyclic if it has no cycles. A connected acyclic graph is called a tree.

Definition 1.18.

A caterpillar is a tree with the additional property that the removal of all pendant vertices leaves a path. This path is called the spine of the caterpillar, and the vertices of the spine are called vertebrae. A vertebra which is not a support is called a zero string. In a caterpillar, any sequence of exactly \(i\)-consecutive zero strings is called a zero string of length \(i\). A caterpillar which has no zero string of length at least 2 is said to be of class 1 and all other caterpillars are of class 2.

Definition 1.19.

The join of \(n\) vertex disjoint graphs \(G_1, G_2, \ldots, G_n\) with vertex sets \(V_1, V_2, \ldots, V_n\) respectively is denoted by \(G_1 + G_2 + \ldots + G_n\) and is defined by \(G_1 \cup G_2 \cup \ldots \cup G_n\) and all lines joining \(V_i\) with \(V_j \ \forall i \neq j \text{ and } 1 \leq i, j \leq n\).
Definition 1.20.
A wheel is a graph obtained from a cycle by adding a new vertex and edges it to all the vertices of a cycle. A wheel with \(p \) vertices is denoted by \(W_p = K_1 + C_{p-1} \).

Definition 1.21.
An edge \(e = uv \) of a graph \(G \) is said to be subdivided if \(e \) is replaced by the edges \(uw \) and \(wv \) for some vertex \(w \notin V(G) \).

Definition 1.22.
A wounded spider is the graph obtained by subdividing at most \(r-1 \) of the edges of a star \(K_{1,r} \) for \(r \geq 2 \).

Definition 1.23[15].
The corona of two graphs \(G_1 \) and \(G_2 \) is defined to be the graph \(G = G_1 \circ G_2 \) formed from one copy of \(G_1 \) and \(|V(G_1)| \) copies of \(G_2 \) where the \(i^{th} \) vertex of \(G_1 \) is adjacent to every vertex in the \(i^{th} \) copy of \(G_2 \).

Definition 1.24.
A subset \(S \) of \(V \) in a graph \(G \) is said to be independent if no two vertices in \(S \) are adjacent. The maximum number of vertices in an independent set is called the independence number of \(G \) and is denoted by \(\beta(G) \). A set \(F \) of edges in a graph \(G \) are said to be independent if no two of the edges in \(F \) are adjacent. A matching of \(G \) is a set of independent edges in \(G \). The maximum cardinality of an independent
set of edges in G is called the edge independence number of G and is denoted by $\beta_1(G)$. A matching M is maximum if there is no matching M' with $|M'| > |M|$.

Definition 1.25.

The size of smallest maximal independent set of G is called independent domination number of G and is denoted by $i(G)$.

Definition 1.26.

A vertex and an edge are said to cover each other if they are incident. A set of vertices which covers all the edges of a graph G is called a cover for G. A set of edges which covers all the vertices of a graph G is called an edge cover for G. The smallest number of vertices in any cover for G is called its covering number of G and is denoted by $\alpha(G)$. The smallest number of edges in any edge cover for G is called the edge covering number of G and is denoted by $\alpha_1(G)$. An edge cover exists if and only if $\delta(G) > 0$.

Definition 1.27.

A set of independent edges covering all the vertices of a graph G is called a 1-factor or a perfect matching of G.

Definition 1.28.

A graph G is decomposable if G can be expressed as a join of two proper subgraphs (equivalently G^c is disconnected). A graph which is not decomposable is said to be indecomposable. If G can be decomposed into r proper vertex disjoint
Chapter 1: Preliminaries

A subset S of V is called a dominating set if every vertex in $V \setminus S$ is adjacent to some vertex in S.

The domination number γ is the minimum cardinality of a dominating set of G. A γ-set is any dominating set.

Definition 1.29.

A proper coloring of G is an assignment of colors to the vertices of G, such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$.

Let $V = \{u_1, u_2, ..., u_p\}$ and $\mathcal{C} = \{C_1, C_2, ..., C_m\}$ be a collection of subsets $C_i \subseteq V$. Then a subset $A = \{u_1, u_2, ..., u_m\}$ is a transversal of \mathcal{C} if $|A \cap C_i| = 1$, $1 \leq i \leq m$. A color represented in a vertex u is called a non-repeated color if there exists one color class $C_i \in \mathcal{C}$ such that $C_i = \{u\}$.

Remark 1.30. For any non-trivial tree T, $\chi(T) = 2$.

Definition 1.31.

The open neighborhood $N(v)$ of a vertex v is the set of all vertices adjacent to v. $N[v] = N(v) \cup \{v\}$ is called the closed neighborhood of v. The open neighborhood set $N(S)$ of a set S of vertices is the set of vertices adjacent to some vertex in S. $N[S] = N(S) \cup S$ is called the closed neighborhood set of S.

Definition 1.32.
A subset S of V is called a dominating set if every vertex in $V - S$ is adjacent to some vertex in S. A dominating set S is a minimal dominating set if no proper subset of S is a dominating set of G. The domination number γ is the minimum cardinality taken over all minimal dominating sets of G. A γ-set is any dominating set with cardinality γ. The upper domination number Γ is the maximum cardinality taken over all minimal dominating sets of G.

Notation 1.33.

For any real number x, $\lfloor x \rfloor$ denotes the largest integer less than or equal to x and $\lceil x \rceil$ denotes the smallest integer greater than or equal to x.

Theorem 1.34[15]. For any path P, $\gamma(P) = \left\lfloor \frac{p + 1}{3} \right\rfloor$.

Definition 1.35.

Let S be a set of vertices of a graph G and let $u \in S$. We say that a vertex v is a private neighbor of u (with respect to S) if $N[v] \cap S = \{u\}$. The private neighbor set of u with respect to S is defined as $pn[u, S] = \{v : N[v] \cap S = \{u\}\}$. Notice that $u \in pn[u, S]$ if and only if u is an isolate in $\langle S \rangle$, in which case we say that u is its own private neighbor.

Definition 1.36.
The private neighbor set of a set S is defined as $pn(S) = \{v : pn[v,S] \neq \emptyset\}$. The private neighbor count of a set S is defined to be the cardinality of $pn(S)$ and is denoted by $pnc(S)$.

The concept of irredundance number was introduced by Cockayne, Hedetniemi and Miller [5].

Definition 1.37.

A subset $S \subseteq V$ is irredundant if for every $v \in S$, $pn[v,S] \neq \emptyset$, i.e., every vertex $v \in S$ has at least one private neighbor. An irredundant set S is called a maximal irredundant set if no proper super set of S is irredundant. The minimum and maximum cardinality of a maximal irredundant set in G are called the irredundance number and upper irredundance number of G and are denoted by $ir(G)$ and $IR(G)$ respectively.

Theorem 1.38[15].

A dominating set S is a minimal dominating set if and only if it is dominating and irredundant.

Theorem 1.39 [6].

For any graph G, $IR(G) \leq p - \delta(G)$.

Corollary 1.40[7].

For any graph G, $\Gamma(G) \leq p - \delta(G)$ and $\beta_0(G) \leq p - \delta(G)$.

Proposition 1.41[6].
For any \(p \)-vertex graph \(G \) with minimum degree \(\delta \), \(IR(G) \leq p - \delta(G) \), where equality holds if and only if \(G \) is one of the following graphs:

(i) \(V(G) = X \cup W \), where \(|X| = p - \delta \), \(X \) is independent in \(G \) and each vertex in \(X \) is joined to each vertex in \(W \). The vertices in \(W \) are joined to one another arbitrarily, subject to \(\text{deg} \ w \geq \delta \) for each \(w \in W \).

(ii) \(V(G) = X \cup Y \cup Z \), where \(|X| = |Y| = p - \delta \) (i.e., \(\delta \geq \frac{p}{2} \)), \(\langle X \rangle \cong \langle Y \rangle \cong K_{p - \delta} \) and the vertices in \(X \) are joined to the vertices in \(Y \) by a matching. Further, \(|Z| = 2\delta - p \), each vertex in \(Z \) is joined to each vertex in \(X \cup Y \) and the vertices in \(Z \) are joined to one another arbitrarily, subject to \(\text{deg} \ z \geq \delta \) for each \(z \in Z \).

Corollary 1.42 [6].

(a) If \(IR(G) = p - \delta(G) \), then \(\Gamma(G) = IR(G) \).

(b) If \(IR(G) = p - \delta(G) \), where \(\delta < \frac{p}{2} \), then \(\beta_0(G) = \Gamma(G) = IR(G) \).

Theorem 1.43 [7].

For any graph \(G \), \(IR(G) = p - \delta(G) \) if and only if \(\Gamma(G) = p - \delta(G) \).

Cockayne et al [5] were first observed the following inequality chain.

Theorem 1.44 [5].

For any graph \(G \), \(\text{ir}(G) \leq \gamma(G) \leq i(G) \leq \beta_0(G) \leq \Gamma(G) \leq IR(G) \).
The concept of total (open) domination was introduced by Cockayne, Dawes and Hedetniemi [4].

Definition 1.45.

A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. A total dominating set S is a minimal total dominating set if no proper subset of S is a total dominating set of G. The total domination number γ_t is the minimum cardinality taken over all minimal total dominating sets of G. A γ_t-set is any minimal total dominating set with cardinality γ_t. Clearly, total dominating sets exist in G if and only if $\delta(G) > 0$.

Theorem 1.46 [12].

For $p \geq 3$, $\gamma_t(P_p) = \gamma_t(C_p) = \left\lceil \frac{p}{2} \right\rceil$ if $p \equiv 0, 1, 3 \pmod{4}$

$\left\lceil \frac{p}{2} \right\rceil + 1$ if $p \equiv 2 \pmod{4}$

Furthermore if $p \equiv 2, 3 \pmod{4}$, then there is a γ_t-set of P_p that contains one of its end vertices.

Theorem 1.47 [4].

If G is a connected graph with $p \geq 3$ vertices, then $\gamma_t(G) \leq \frac{2p}{3}$.

Theorem 1.48 [4].

If a graph G has no isolated vertices, $\gamma_t(G) \leq p - \Delta(G) + 1$.

20
Theorem 1.49[4].
If a graph G is connected, then $\gamma_r(G) \leq p - \Delta(G)$.

Theorem 1.50[4].
If a graph G and G^c have no isolated vertices, $\gamma_r(G) + \gamma_r(G^c) \leq p + 2$ with equality if and only if G or G^c is mK_2.

Theorem 1.51[2].
A clique partition of G is a partition of $V(G)$ into non-empty subsets V_1, V_2, \ldots, V_k such that each graph induced by V_i $(1 \leq i \leq k)$ is a complete subgraph of G. The clique partition number, \(\chi_c(G) \), of G is the smallest number of partitions for which there is a clique partition of G.

Definition 1.52[1].
The uniform domination number $\gamma_u(G)$, is the least positive integer k such that any k-element subset of V is a dominating set of G.

Theorem 1.53[1].
For any graph G, $\gamma_u(G) = p - \delta(G)$.

The concept of safe clique partition number and the dominator chromatic number of G were introduced by Gera et. al [8].

Definition 1.54[8].
A dominator coloring of G is a proper coloring of G with the additional property that every vertex in G dominates an entire color class. The dominator chromatic number, $\chi_d(G)$ is the minimum number of colors for which there exists a dominator coloring of G.

Definition 1.55[8].

A clique partition of G is a partition of $V(G)$ into non empty subsets $V_1, V_2, ..., V_r$ such that each sub graph induced by $V_i (1 \leq i \leq r)$ is a complete sub graph of G. The clique partition number, $\chi(G)$ is the smallest number of partitions for which there exists a clique partition of G.

Definition 1.56[8].

A safe clique partition of a graph G is a partition of the vertices of G into complete sub graphs with the additional property that for each vertex v, there exists a complete sub graph that has no vertex in the open neighborhood of v. The smallest number of partitions for which there exists a safe clique partition of G is called the safe clique partition number of G and is denoted by $\chi_s(G)$.

Theorem 1.57[8].

$$1 + \left\lceil \frac{p}{3} \right\rceil \quad ; \quad p = 2, 3, 4, 5, 7$$

The path P_p of order $p \geq 2$ has $\chi_d(P_p) = \left\lceil \frac{p}{3} \right\rceil$; otherwise.
Lemma 1.58[8].

Let G be a tree of order $p \geq 5$. A maximum matching M^* of G is unsafe if and only if G is the wounded spider $W_{a,b}(a \geq 1, b \geq 0)$.

Theorem 1.59[9].

Let G be any connected graph. Then $\max \{\chi(G), \gamma(G)\} \leq \chi_d(G) \leq \chi(G) + \gamma(G)$.

Theorem 1.60[8].

If G is a caterpillar in which the vertices of degree less than 3 are independent, and if the spine of G contains exactly r vertices of degree at least 3, then $\chi_d(G) = r + 1$.

Definition 1.61[11]

Let H be a non trivial proper sub graph of G. Two vertices u and v (two lines x and y) are said to be H-adjacent if there exists a sub graph H' of G which is isomorphic to H such that H' contains u and v (x and y).

Definition 1.62[11]

The open H- neighborhood set of a vertex v of G is the set of all vertices of G which are H-adjacent to v and is denoted by $N_H(v)$ and the closed H-neighborhood set of v is $N_H[v] = N_H(v) \cup \{v\}$.

Definition 1.63[11]

The H-degree of a vertex v denoted by $\deg_H(v)$, and is defined by $\deg_H(v) = |N_H(v)|$. The maximum H-degree of G is denoted by $\Delta_H(G)$, and is defined by
max \{ |N_H(v)| : v \in V(G) \} and the minimum H-degree of G is denoted by \(\delta_H(G) = \{ |N_H(v)| : v \in V(G) \} \). If a vertex v is not H-adjacent to any vertex of G, then v is H-isolated in G.