<table>
<thead>
<tr>
<th>Table No.</th>
<th>Titles of the table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Efficacy of petroleum ether extracts of plants against mosquito vectors</td>
</tr>
<tr>
<td>2</td>
<td>Efficacy of chloroform extracts of plants against mosquito vectors</td>
</tr>
<tr>
<td>3</td>
<td>Efficacy of acetone extracts of plants against mosquito vectors</td>
</tr>
<tr>
<td>4</td>
<td>Efficacy of Methanol extracts of plants against mosquito vectors</td>
</tr>
<tr>
<td>5</td>
<td>Efficacy of aqueous extracts of plants against mosquito vectors</td>
</tr>
<tr>
<td>6</td>
<td>Ethnomedicinal plants tested for their insecticidal actions against mosquitoes and their properties</td>
</tr>
<tr>
<td>7</td>
<td>Traditional plants used for mosquito repellent</td>
</tr>
<tr>
<td>8</td>
<td>List of random primers used for RAPD analysis</td>
</tr>
<tr>
<td>9</td>
<td>RAPD-PCR reaction conditions</td>
</tr>
<tr>
<td>10</td>
<td>Screening of larvicidal effects of ethnomedicinal plants against Ae. Albopictus at 500 ppm concentration in different solvents</td>
</tr>
<tr>
<td>11</td>
<td>Screening of larvicidal effects of ethnomedicinal plants against An. barbirostris at 500 ppm concentration in different solvents</td>
</tr>
<tr>
<td>12</td>
<td>Screening of larvicidal effects of ethnomedicinal plants against Cx. quinquefasciatus at 500 ppm concentration in different solvents</td>
</tr>
<tr>
<td>13</td>
<td>Mortality, log probit and regression analysis of third larval instars of A. albopictus, A. barbirostris and C. quinquefasciatus in different concentrations of crude root extract of H. benghalensis</td>
</tr>
<tr>
<td>14</td>
<td>Completely randomized three-way factorial ANOVA using mosquito species, period of bioassay and different concentrations as variables</td>
</tr>
<tr>
<td>15</td>
<td>Lethal time (LT$_{50}$) of acetone extract of H. benghalensis (root) against the three mosquito vector species</td>
</tr>
<tr>
<td>16</td>
<td>Mortality, log probit and regression analysis of third larval instars of A. albopictus, A. barbirostris and C. quinquefasciatus in different concentrations of petroleum ether extract of Curcuma longa rhizome</td>
</tr>
<tr>
<td>17</td>
<td>Log probit and regression analysis of larvicidal activity of...</td>
</tr>
</tbody>
</table>
petroleum ether extract of *Elsholtzia communis* (leaf) against different mosquito species

Log probit and regression analysis of larvicidal activity of extract of *Elsholtzia communis* leaf (chloroform) against different mosquito species

Log probit and regression analysis of larvicidal activity of acetone extract of *Elsholtzia communis* leaf (Acetone) against different mosquito species

Mortality, log probit and regression analysis of third larval instars of *Ae. albopictus*, *An. barbirostris* and *Cx. quinquefasciatus* in different concentrations of Petroleum ether extract of *Homalomena aromatica* rhizome

Log probit and regression analysis of larvicidal activity of acetone extract of *Elsholtzia communis* leaf (Acetone) against different mosquito species

Mortality, log probit and regression analysis of third larval instars of *Ae. albopictus*, *An. barbirostris* and *Cx. quinquefasciatus* in different concentrations of Petroleum ether extract of *Homalomena aromatica* rhizome

Larvicidal action of *Syzygium aromaticum* leaves against 3rd instar larvae of *Culex quinquefasciatus* (Culicidae: Diptera)

Biochemical profile of nutrient reserves and primary metabolites in freshly emerged III instar larvae treated with sublethal concentration (5 ppm) of acetone extract of *H. benghalensis* root

Consequence of different concentrations of petroleum ether extract of *Melia azedarach* fruit on the development of *Aedes albopictus* treated as the first instar larvae

Preliminary effect of acetone extract of *H. benghalensis* root on *Ae. albopictus, An.barbirostris*, and *Cx. quinquefasciatus* adults exposed continuously for 3 hours at different concentrations and mortality after 24 hour exposure

Table 25. Repellent activity of *Gmelina arborea* leaf extracts against blood-starved female *Ae. albopictus*

Repellent activity of *Curcuma longa* rhizome extracts against blood-starved female *Ae.albopictus*

Repellent activity of *Homalomena aromatica* rhizome extracts against blood-starved female *Ae.albopictus*

Repellent activity of *Gmelina arborea* leaf extracts against blood-starved female *An. barbirostris*

Oviposition deterrency of different plant extracts against *Ae. albopictus* female

Alteration in number of total bands in treated genomic DNA from larvae of *C. quinquefasciatus*
List of Plates

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Title of the Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mosquito vectors used in the present study</td>
</tr>
<tr>
<td></td>
<td>- Aedes albopictus</td>
</tr>
<tr>
<td></td>
<td>- Anopheles barbirostris</td>
</tr>
<tr>
<td></td>
<td>- Culex quinquefasciatus</td>
</tr>
<tr>
<td>2.</td>
<td>Mosquito culture</td>
</tr>
<tr>
<td>3.</td>
<td>Plants tested for mosquitocidal properties</td>
</tr>
<tr>
<td>4.</td>
<td>Effect of petroleum extract of Melia azedarach on the development of Cx. quinquefasciatus larvae</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title of the Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Global distribution of human Plasmodium spp. and lymphatic filarial species</td>
</tr>
<tr>
<td></td>
<td>A) malaria) and (B) lymphatic filariasis</td>
</tr>
<tr>
<td>2.</td>
<td>Distribution of Dengue disease throughout the world</td>
</tr>
<tr>
<td>3.</td>
<td>Study design for repellent test</td>
</tr>
<tr>
<td>4.</td>
<td>Comparison of RAPD-PCR profiles of III instar larvae of Culex quinquefasciatus treated with plant extracts</td>
</tr>
</tbody>
</table>