4. LIST OF TABLES

Table 1. Survival out of water of *T. pectoralis* of differing body weights at 30 – 35% RH.

Table 2. Survival out of water of *T. pectoralis* of differing body weights at 70 – 75% RH.

Table 3. Survival out of water of *T. pectoralis* of differing body weights at 90 – 95% RH.

Table 4. Thickness of the blood / water diffusion barrier in the secondary gill lamellae of *T. pectoralis* of different sizes.

Table 5. Effect of temperature on the asphyxiation of *T. pectoralis* (15 – 20 g) values are $\bar{x} \pm$ S.E.

Table 6. Air breathing frequencies in the normal and amputated fishes (15 – 20 g) at 28 °C over 6 days.

Table 7. Effect of temperature on the air breathing frequencies in the normal and amputated fishes (15 – 20 g).

Table 8. Effect of temperature on the air breathing frequencies in the normal, sham-operated and amputated fishes (15 – 20 g).

Table 9. Aquatic O_2 consumption (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of *T. pectoralis* under forcibly submerged conditions at 27$^0 \pm$ 10 C.

Table 10. Aerial respiration (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of *T. pectoralis* during air exposure conditions at 27$^0 \pm$ 10 C.

Table 11. Bimodal respiration (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of *T. pectoralis* at 27$^0 \pm$ 10 C.

Table 12. Bimodal respiration (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of *T. pectoralis* at 23$^0 \pm$ 10 C.
Table 13. Bimodal respiration (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 33°C ± 1°C.

Table 14. Two hour air exposure on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 27°C ± 1°C.

Table 15. Four hour air exposure on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 27°C ± 1°C.

Table 16. Two hour hypoxic exposure on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 26°C ± 1°C.

Table 17. Four hour hypoxic exposure on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 26°C ± 1°C.

Table 18. Two hour submergence on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 27°C ± 1°C.

Table 19. Four hour submergence on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 27°C ± 1°C.

Table 20. Composition of steel factory effluent (SFE).

Table 21. Effect of different concentrations of steel factory effluent (SFE) on survival of *T. pectoralis* as a function of different time intervals.

Table 22. Effect of 1% steel factory effluent exposure on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 27°C ± 1°C.

Table 23. Effect of 1% steel factory effluent exposure on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* for 15 days at 27°C ± 1°C.

Table 24. Effect of 1% steel factory effluent exposure on the bimodal O₂ uptake (mlO₂ kg⁻¹ hr⁻¹) of *T. pectoralis* at 27°C ± 1°C for 30 days.
Table 25. Effect of 2% steel factory effluent exposure on the bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* at 27 \(^{0}\) ± 1° C for 48 hr.

Table 26. Effect of 2% steel factory effluent exposure on the bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* at 27 \(^{0}\) ± 1° C for 15 d.

Table 27. Effect of 2% steel factory effluent exposure on the bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* at 27 \(^{0}\) ± 1° C for 30 d.

Table 28. Effect of 5% steel factory effluent exposure on the bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* at 27 \(^{0}\) ± 1° C for 48 hr.

Table 29. Effect of 5% steel factory effluent exposure on the bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* at 27 \(^{0}\) ± 1° C for 15 d.

Table 30. Effect of 5% steel factory effluent exposure on the bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* at 27 \(^{0}\) ± 1° C for 30 d.

Table 31. Circadian rhythm of bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* (3.5 - 5.8 g; N= 6 fishes) at 27 \(^{0}\) ± 1° C I Day.

Table 32. Circadian rhythm of bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* (3.5 - 5.8 g; N= 6 fishes) at 27 \(^{0}\) ± 1° C II Day.

Table 33. Circadian rhythm of bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* (3.5 - 5.8 g; N= 6 fishes) at 27 \(^{0}\) ± 1° C III Day.

Table 34. Circadian rhythm of bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* (11.5 - 19.8 g; N= 6 fishes) at 27 \(^{0}\) ± 1° C I Day.

Table 35. Circadian rhythm of bimodal O\(_2\) uptake (mlO\(_2\) kg\(^{-1}\) hr\(^{-1}\)) of *T. pectoralis* (11.5 - 19.8 g; N= 6) at 27 \(^{0}\) ± 1° C II Day.
Table 36. Circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (11.5 - 19.8 g; N= 6) at $27^0 \pm 1^0$ C III Day.

Table 37. Circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (21.5 - 27.3 g; N= 6) at $27^0 \pm 1^0$ C I Day.

Table 38. Circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (21.5 - 27.3 g; N= 6) at $27^0 \pm 1^0$ C II Day.

Table 39. Circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (21.5 - 27.3 g; N= 6) at $27^0 \pm 1^0$ C III Day.

Table 40. Effect of 1% steel factory effluent exposure on the circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (11.6 - 19.0 g) for 48 hr at $27^0 \pm 1^0$ C.

Table 41. Effect of 1% steel factory effluent on the circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (12.0 - 19.5 g; N = 6) for 15 d at $27^0 \pm 1^0$ C.

Table 42. Effect of 1% steel factory effluent on the circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (11.5 - 18.5 g; N = 6) for 30 d at $27^0 \pm 1^0$ C.

Table 43. Effect of 2% steel factory effluent on the circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (12 - 19.5 g; N = 6) for 48 hr at $27^0 \pm 1^0$ C.

Table 44. Effect of 2% steel factory effluent on the circadian rhythm of bimodal O_2 uptake (mlO$_2$ kg$^{-1}$ hr$^{-1}$) of T. pectoralis (11.5 - 19.6 g; N = 6) for 15 d at $27^0 \pm 1^0$ C.
Table 45. Effect of 2% steel factory effluent on the circadian rhythm of bimodal O\textsubscript{2} uptake (mlO\textsubscript{2} kg-1 hr-1) of *T. pectoralis* (11.5 - 18.9 g ;N = 6) for 30 d at 27° ± 1°C.

Table 46. Effect of 5% steel factory effluent on the circadian rhythm of bimodal O\textsubscript{2} uptake (mlO\textsubscript{2} kg-1 hr-1) of *T. pectoralis* (10.5 - 20.5 g ; N = 6) for 48 hr at 27° ± 1°C.

Table 47. Effect of 5% steel factory effluent on the circadian rhythm of bimodal O\textsubscript{2} uptake (mlO\textsubscript{2} kg-1 hr-1) of *T. pectoralis* (11.5 - 19.6 g ; N = 6) for 15 d at 27° ± 1°C.

Table 48. Effect of 5% steel factory effluent on the circadian rhythm of bimodal O\textsubscript{2} uptake (mlO\textsubscript{2} kg-1 hr-1) of *T. pectoralis* (12.0 - 19.7 g ; N = 6) for 30 d at 27° ± 1°C.

Table 49. Summary of haematological characteristics of *T. pectoralis* (n = 20).

Table 50. Effect of air-exposure on some blood parameters of *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 51. Effect of hypoxic-exposure on some blood parameters of *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 52. Effect of submergence on some blood parameters of *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 53. Effect of air-exposure, hypoxic exposure and submergence on the differential count of blood cells in *T. pectoralis* (Values are the mean ± S D of 6 individual observations).
Table 54. Effect of 1% steel factory effluent exposure on some blood parameters of *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 55. Effect of 2% steel factory effluent exposure on some blood parameters of *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 56. Effect of 5% steel factory effluent exposure on some blood parameters of *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 57. Effect of 1% steel factory effluent exposure on the differential count of blood cells in *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 58. Effect of 2% steel factory effluent exposure on the differential count of blood cells in *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 59. Effect of 5% steel factory effluent exposure on the differential count of blood cells in *T. pectoralis* (Values are the mean ± S D of 6 individual observations).

Table 60. Effect of air-exposure, submergence and hypoxic treatment on the selected organic constituents and oxidative enzymes in the gill of *T. pectoralis*.

Table 61. Effect of air-exposure, submergence and hypoxic treatment on the selected organic constituents and oxidative enzymes in the labyrinthine organ of *T. pectoralis*.

Table 62. Effect of air-exposure, submergence and hypoxic treatment on the selected organic constituents and oxidative enzymes in the liver of *T. pectoralis*.

Table 63. Effect of air-exposure, submergence and hypoxic treatment on the selected organic constituents and oxidative enzymes in the dorsal muscle of *T. pectoralis*.
Table 64. Effect of 1% steel factory effluent exposure on the selected organic constituents and oxidative enzymes in the gill and labyrinthine organ of T. pectoralis.

Table 65. Effect of 2% steel factory effluent exposure on the selected organic constituents and oxidative enzymes in the gill and labyrinthine organ of T. pectoralis.

Table 66. Effect of 5% steel factory effluent exposure on the selected organic constituents and oxidative enzymes in the gill and labyrinthine organ of T. pectoralis.

Table 67. Effect of 1% steel factory effluent exposure on the selected organic constituents and oxidative enzymes in the dorsal muscle and liver of T. pectoralis.

Table 68. Effect of 2% steel factory effluent exposure on the selected organic constituents and oxidative enzymes in the dorsal muscle and liver of T. pectoralis.

Table 69. Effect of 5% steel factory effluent exposure on the selected organic constituents and oxidative enzymes in the dorsal muscle and liver of T. pectoralis.

Table 70. Effect of air-exposure, hypoxic exposure and submergence on the enzymes of respiratory organs bubble nest builder, T. pectoralis.

Table 71. Effect of 5% steel factory effluent exposure on the enzymes of respiratory organs bubble nest builder, T. pectoralis.

Table 72. Effect of air-exposure, hypoxic exposure and submergence on the non-specific immune responses in the bubble nest builder, T. pectoralis.

Table 73. Effect of 5% steel factory effluent exposure on the non-specific immune responses in the bubble nest builder, T. pectoralis.