Contents

Chapter 1: Introduction and Review of Literature

1.0. Introduction 1
1.1. Need for safe vaccines 1
1.2. Concept and background of immunoadjuvants 1
1.3. Role of adjuvants in the immune responses 3
1.4. Characteristics of an ideal adjuvant 3
1.5. Requirement for adjuvants 4
1.6. Types and classification of adjuvants 4
1.7. Immunopotentiators 6
1.8. Mechanism of action and role of immunostimulatory or immunopotentiators in immunity processing
 1.8.0. Toll-like receptors 7
 1.8.1. NOD (Nucleotide-binding oligomerization domain) like receptors 7
 1.8.2. Mannose receptors 9
 1.8.3. β-Glucan receptors or Dectin-1 9
1.9. Most commonly used immune-potentiating adjuvants 9
 1.9.0. Lipopolysaccharide, lipid A and Monophosphoryl lipid A 10
 1.9.1. Muramyl dipeptides 11
 1.9.2. Lipoproteins and lipopeptides 12
 1.9.3. α-Galactosylceramide 14
 1.9.4. Imidazoquinolines and other small synthetic compounds 14
1.10. Limitations of currently available adjuvants 15
1.11. Future Prospects: Need for Th1 adjuvants 16
1.12. Plant based extract as immunopotentiators 16
 1.12.0. Plant based products currently under investigation 17
 1.12.1. Saponins, Quil-A and QS-21 18
1.13. Aim and outline of this thesis 19
References 21

Chapter 2: Design and synthesis of immune adjuvants

2.1 Section A: Design and synthesis of iridoid based immune adjuvants 31-91
 2.1.0. Introduction to iridoid glycosides 31
 2.1.1. Synthesis of novel picroside-II based immune adjuvants 31
 2.1.1.1. Rational behind structural modification of picroside-II 33
 2.1.1.2. Random acylation of picroside-II using DCC/ DMAP 35
 2.1.1.3. Lipase catalysed trans-esterification of picroside-II: Enzyme optimization study 36
 2.1.1.4. Regio-selective acylation of picroside- II using resin bound immobilized Candida antarctica lipase B 38
 2.1.1.5. Biological activity: Evaluation of immune adjuvant activity of PK-II analogs 39
 2.1.1.6. Results and Discussion 39
2.1.2. Synthesis of agnuside and negundoside based immune adjuvants 52
2.1.2.1. Rationale behind structural modification of agnuside and negundoside 52
2.1.2.2. Regio-selective acylation of agnuside and negundoside 53
2.1.2.3. Biological activity: Evaluation of adjuvant activity of lipidated analogs of agnuside and negundoside 55
2.1.2.4. Results and discussion 55
2.1.3. Synthesis of acyl donors 61
2.1.4. Conclusion 63
2.1.5. Experimental section: Synthesis 64
2.1.6. Biological assay 86
References 89

2.2 Section B: Design and synthesis of saponin based immune adjuvants 92-135
2.2.0. Introduction to saponins 92
2.2.1. Rationale behind the design and synthesis of saponins as immune-adjuvants 94
2.2.2. Present work: Synthesis of mono- and di-saccharide saponins 95
2.2.3. Biological activity: Evaluation of immune adjuvant activity of synthetic saponins 103
2.2.4. Results and discussion 104
2.2.5. Conclusion 111
2.2.6. Experimental 112
References 132

2.3 Section C: Development of short and concise route to Pam2Cys and its application in the synthesis of designed TB vaccine 136-164
2.3.0. Introduction to lipopeptides 136
2.3.1. Earlier approaches for the synthesis of lipopeptide derivatives such as Pam3cys and Pam2Cys: 138
2.3.2. Present work: Synthesis of N-acetyl Pam2Cys 142
2.3.3. Rationale behind the selection of TB epitope and present approach towards the conjugation of N-acetyl Pam2Cys to TB epitope (FLTSELPQW) 143
2.3.4. Biological activity 150
2.3.5. Results and discussion 150
2.3.6. Conclusion 152
2.3.7. Experimental 153
References 160

Chapter 3: Development of small molecule immunomodulators

3.1 Section A: 5-Butynylisoxazoles as small molecule immunomodulators: Domino reaction of allenylmagnesium bromides with nitrile oxides 165-196
3.1.0. Introduction to isoxazoles 165
3.1.1. Biological importance of isoxazole containing molecules 165
3.1.2. Literature background 166
3.1.3. Present work: Synthesis of 3-aryl-5-substituted isoxazoles 170
3.1.4. Biological activity: Evaluation of immunomodulatory activity of 3-
aryl-5-substituted isoxazoles

3.1.5. Results and discussion 175
3.1.6. Conclusion 183
3.1.7. Experimental section: Synthesis of 3-aryl-5-substituted isoxazoles 184
3.1.8. Biological Methodologies 190
References 196

3.2 Section B: 2-Alkyl indenols and indenes ether as small molecule immunomodulators: Domino reaction of carbinols under modified Vilsmeier conditions 197-222

3.2.0. Introduction to indene and indenols 197
3.2.1. Biological importance of indene and indenols 197
3.2.2. Previous methods for the synthesis of indenols 198
3.2.3. Present work:- Synthesis of indenols and indene ethers 200
3.2.4. Biological activity: Evaluation of immunomodulatory activity of indene derivatives 206
3.2.5. Results and discussion 207
3.2.6. Conclusion 210
3.2.7. Experimental section 211
References 220

Summary of thesis 223-233

List of publications 224