Chapter 4

OSCILLATION OF THIRD ORDER NONLINEAR DIFFERENCE EQUATIONS

(The content of this chapter has been published in International Journal of Non-linear Science, 10(3) (2010), 349-358.)

4.1 Introduction

In this chapter, we are concerned with the oscillation properties of all the solutions of a third order non-linear difference equation of the form

$$\Delta \left(\frac{1}{r_{n-1}} \Delta \left(\frac{1}{a_{n-1}} (\Delta y_{n-1})^\alpha \right) \right) - \frac{1}{p_{n-1}} (\Delta y_{n-1})^\alpha + \frac{1}{q_n} f(y_n) = 0, \quad n \in N,$$

(4.1.1)

where the following conditions are assumed to be hold.

(H1) \(\{r_n\}, \{a_n\}, \{p_n\} \) and \(\{q_n\} \) are real positive sequences and \(q_n \neq 0 \) for infinitely many values of \(n \).

(H2) \(f : R \to R \) is continuous and \(xf(x) > 0 \) for all \(x \neq 0 \).
(H3) there exists a real valued function \(g \) such that \(f(u) - f(v) = g(u, v)(u - v)^\beta, \)
for all \(u \neq 0 \) and \(v \neq 0 \) and \(g(u, v) \geq L > 0 \in R. \)

(H4) \(\{\phi_n\} \) is real positive sequence.

(H5) \(\sum_{n=n_0}^{\infty} \frac{1}{a_n} = \infty. \)

(H6) \(\sum_{n=n_0}^{\infty} \frac{r_n}{\phi_n} = \infty. \)

(H7) \(\sum_{n=n_0}^{\infty} \frac{\phi_n}{q_n} = \infty. \)

(H8) \(\frac{\phi_{n+1}}{p_n} \geq \frac{\Delta \phi_n}{a_n r_n}. \)

(H9) \(\alpha, \beta \) are positive ratios of odd integers.

(H10) \(\lim_{n \to \infty} \inf \sum_{s=0}^{n} \frac{\phi_s}{q_s} > -\infty. \)

(H11) \(\sum_{n=n_0}^{\infty} \frac{\phi_n}{p_n^2 r_n^2 a_n} < \infty. \)

(H12) \(\sum_{n=n_0}^{\infty} \frac{(\Delta \phi_n)^2}{r_n^2 a_n^2} < \infty. \)

(H13) \(\sum_{n=n_0}^{\infty} \left(\frac{\phi_{n+1}}{p_n} - \frac{\Delta \phi_n}{a_n r_n} \right)^2 \frac{1}{p_n \phi_n} < \infty. \)

The technique followed in this chapter is similar to the technique used in the book of Wong and Agarwal [65].

4.2 Basic Lemmas

Lemma 4.2.1. Let the function \(K(n, s, y) : N_{n_0} \times N_{n_0} \times R \to R \) be such that for each fixed \(n \) and \(s \), the function \(K(n, s, y) \) is non-decreasing in \(x. \)
Furthermore, let \(\{h_n\} \) be a given sequence and the sequences \(\{u_n\} \) and \(\{v_n\} \) be defined on \(N \) satisfying, for all \(n \in N_{n_0} \),

\[
 u_n \geq (\leq) h_n + \sum_{s=n_0}^{n-1} K(n, s, u_s), \tag{4.2.1}
\]

and

\[
 v_n = h_n + \sum_{s=n_0}^{n-1} P(n, s, v_s) \tag{4.2.2}
\]

respectively. Then \(u_n \geq (\leq) v_n \) for all \(n \in N_{n_0} \).

Proof. The proof can be found in [65]. \(\square \)

Lemma 4.2.2. Suppose that \(y_n > 0 (\leq 0) \) is a solution of (4.1.1) for \(n \in N_{n_0}^\gamma \) \((1 \leq n_0 \leq \gamma)\) and there exists a positive sequence \(\{\phi_n\} \), and \(m > 0 \) such that

\[
 - \Delta \left(\frac{1}{a_{n_0-1}} (\Delta y_{n_0})^\alpha \right) \phi_{n_0-1} - \frac{\Delta \left(\frac{1}{a_s} (\Delta y_s)^\alpha \right) \phi_s (\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s} + \frac{n}{s=n_0} \left(\frac{\phi_s}{q_s} - \frac{(\Delta y_{s-1})^\alpha \phi_s}{f(y_s)p_{s-1}} - \frac{\Delta \left(\frac{1}{a_{s-1}} (\Delta y_{s-1})^\alpha \right) (\Delta \phi_{s-1})}{f(y_s)r_{s-1}} \right) \geq m, \tag{4.2.3}
\]

for all \(n \in N_{n_0}^\gamma \). Then

\[
 \Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \phi_n \geq (\leq) -mf(y_n)r_n, \quad n \in N_{n_0}^\gamma. \tag{4.2.4}
\]

Proof. Let \(z_n = \frac{1}{r_n} \Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \phi_n \), then

\[
 \Delta z_n = \Delta \left(\frac{1}{r_n} \Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \right) \phi_{n+1} + \frac{1}{r_n} \Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) (\Delta \phi_n).
\]

Now,

\[
 \frac{\Delta z_{n-1}}{f(y_n)} = -\frac{\phi_n}{q_n} + \frac{(\Delta y_{n-1})^\alpha \phi_n}{f(y_n)p_{n-1}} + \frac{\Delta \left(\frac{1}{a_{n-1}} (\Delta y_{n-1})^\alpha \right) (\Delta \phi_{n-1})}{f(y_n)r_{n-1}},
\]

for all \(n \in N_{n_0}^\gamma \).
summing from \(n_0 \) to \(n \), where \(n \in N^\gamma_{n_0} \), we have

\[
-z_n \frac{f(y_{n+1})}{f(y_n)} = -z_{n_0-1} \frac{f(y_{n_0})}{f(y_n)} + \sum_{s=n_0}^{n} \left(\frac{\phi_s}{q_s} - \frac{(\Delta y_{s-1})^\alpha \phi_s}{f(y_s)p_{s-1}} - \Delta \left(\frac{1}{a_{s-1}} (\Delta y_{s-1})^\alpha \phi_{s-1} \right) \frac{f(y_s)r_{s-1}}{f(y_s)f(y_{s+1})} \right) \\
+ \sum_{s=n_0}^{n} \Delta \left(\frac{1}{a_x}(\Delta y_x)^\alpha \right) \frac{\phi_x (\Delta y_x)^\beta g(y_{x+1}, y_x)}{f(y_x)f(y_{x+1})r_x}. \tag{4.2.5}
\]

In view of (4.2.3), we see further that

\[
-z_n \geq m f(y_{n+1}) + \sum_{s=n_1}^{n} \Delta \left(\frac{1}{a_x}(\Delta y_x)^\alpha \right) \frac{\phi_x (\Delta y_x)^\beta g(y_{x+1}, y_x)}{f(y_x)f(y_{x+1})r_x}. \tag{4.2.6}
\]

CASE 1: Suppose that \(y_n > 0 \). Then (4.2.6) implies \(-z_n > 0 \), or equivalently \(\Delta y_n < 0 \), \(n \in N^\gamma_{n_1} \). Let \(u_n = -z_n = -\frac{1}{r_n} \Delta \left(\frac{1}{a_n}(\Delta y_n)^\alpha \right) \phi_n \). Then (4.2.6) becomes

\[
u_n \geq m f(y_{n+1}) + \sum_{s=n_1}^{n} \frac{f(y_{n+1})(-\Delta y_n)^\beta g(y_{n+1}, y_n) u_s}{f(y_s)f(y_{s+1})}. \tag{4.2.7}
\]

also let \(v_n = m f(y_{n+1}) + \sum_{s=n_1}^{n} \frac{f(y_{n+1})(-\Delta y_n)^\beta g(y_{n+1}, y_n) v_s}{f(y_s)f(y_{s+1})} \). \tag{4.2.8}

Using Lemma 4.2.1, we have from (4.2.7) and (4.2.8), that

\[
u_n \geq v_n. \tag{4.2.9}
\]

From (4.2.8), we find

\[
u_n \frac{f(y_{n+1})}{f(y_{n+1})} = \Delta \left(m + \sum_{s=n_1}^{n} \frac{(-\Delta y_n)^\beta g(y_{n+1}, y_n)}{f(y_s)f(y_{s+1})} v_s \right) \\
= \frac{(-\Delta y_{n+1})^\beta g(y_{n+2}, y_{n+1})}{f(y_{n+1})f(y_{n+2})} v_{n+1}. \tag{4.2.10}
\]

On the other hand

\[
u_n \frac{f(y_{n+1})}{f(y_{n+1})} = \frac{\Delta v_n}{f(y_{n+1})} - \frac{(-\Delta y_{n+1})^\beta g(y_{n+2}, y_{n+1})}{f(y_{n+1})f(y_{n+2})} v_{n+1}. \tag{4.2.11}
\]
Equating (4.2.10) and (4.2.11), we obtain

\[\Delta v_n = 0 \text{ and so } v_n = v_{n1} = mf(y_{n1}), \ n \in N_{n1}^\gamma. \tag{4.2.12} \]

From (4.2.9) and (4.2.12), we obtain

\[\Delta \left(\frac{1}{a_n} (\Delta y_n)^a \right) \phi_n \leq -mf(y_{n1})r_n. \]

CASE 2: Suppose that \(y_n < 0 \). Then (4.2.6) gives \(z_n > 0 \), or equivalently \(\Delta y_n > 0, \ n \in N_{n1}^\gamma \). Let \(u_n = z_n = \frac{1}{r_n} \Delta \left(\frac{1}{a_n} (\Delta y_n)^a \right) \phi_n \). It follows from (4.2.6) that

\[u_n \geq -mf(y_{n+1}) + \sum_{s=n1}^{n} \frac{[-f(y_{n+1})](\Delta y_s)^3 g(y_s + 1, y_s)}{f(y_s)f(y_{s+1})} u_s, \]

also let \(v_n = -mf(y_{n+1}) + \sum_{s=n1}^{n} \frac{[-f(y_{n+1})](\Delta y_s)^3 g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})} v_s \).

As in **CASE 1**, \(\Delta v_n = 0 \) and hence \(v_n = v_{n1} = -mf(y_{n1}), \ n \in N_{n1}^\gamma \). Then inequality (4.2.9) immediately reduces to from (4.2.4). The proof is complete.

\[\Box \]

Corollary 4.2.1. Let \(\{y_n\} \) be a positive solution of (4.1.1) and there exists a positive sequence \(\{\phi_n\} \) such that (H5), (H6) and (H10) hold, then

\[\sum_{s=n1}^{\infty} \frac{\Delta \left(\frac{1}{a_s} (\Delta y_s)^a \right) \phi_s(\Delta y_s)^3 g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s} < \infty. \tag{4.2.13} \]

Proof. Suppose

\[\sum_{s=n1}^{\infty} \frac{\Delta \left(\frac{1}{a_s} (\Delta y_s)^a \right) \phi_s(\Delta y_s)^3 g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s} = \infty, \]

51
hence there exists $n_1^* \geq n_1$, such that
\[\Delta \left(\frac{1}{a_{n_0}} (\Delta y_{n_0})^\alpha \right) \phi_{n_0 - 1} f(y_{n_0}) r_{n_0 - 1} + \sum_{s=n_0}^{n} \frac{\phi_s}{q_s} + \sum_{s=n_0}^{n_1^* - 1} \Delta \left(\frac{1}{a_s} (\Delta y_s)^\alpha \right) \phi_s (\Delta y_s)^\beta g(y_{s+1}, y_s) \frac{f(y_s) f(y_{s+1}) r_s}{f(y_s) f(y_{s+1}) r_s} \geq m, \]

where $m > 0$ is a constant, Lemma 4.2.2 implies that
\[\Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \leq -m f(y_{n_1^*}) \frac{r_n}{\phi_n} \text{ for } n \geq n_1^*. \] (4.2.15)

Summing the last inequality from n_2 to $(n - 1)$, we have
\[\frac{1}{a_n} (\Delta y_n)^\alpha \leq \frac{1}{a_{n_2}} (\Delta y_{n_2})^\alpha - m f(y_{n_1^*}) \sum_{s=n_2}^{n-1} \frac{r_s}{\phi_s}. \]

In view of (H6), $\frac{1}{a_n} (\Delta y_n)^\alpha \to -\infty$ as $n \to \infty$, i.e., $\frac{1}{a_n} (\Delta y_n)^\alpha < -k_1$, $k_1 > 0$, $\Delta y_n < -k_1 a_n^\frac{1}{\alpha}$. Summing the last inequality from n_3 to $(n - 1)$, we have
\[y_n < y_{n_3} - k_1^\frac{1}{\alpha} \sum_{s=n_3}^{n-1} a_s^\frac{1}{\alpha}, \text{ for } n \geq n_1^*. \] (4.2.16)

In view of (H5), the relation (4.2.16) implies that y_n is negative eventually, which is a contradiction. The proof is complete. \(\square\)

Lemma 4.2.3. Let $\{\phi_n\}$ be a positive sequence. Suppose that

(i) $\lim_{|y| \to \infty} |f(y)| = \infty$,

(ii) $\lim_{n \to \infty} \sum_{s=n_0}^{n} \frac{\phi_s}{q_s}$ exists.

Let y_n be a non-oscillatory solution of (4.1.1), then
\[\sum_{s=n_0}^{\infty} \Delta \left(\frac{1}{a_s} (\Delta y_s)^\alpha \right) \phi_s (\Delta y_s)^\beta g(y_{s+1}, y_s) \frac{f(y_s) f(y_{s+1}) r_s}{f(y_s) f(y_{s+1}) r_s} < \infty. \] (4.2.17)
\[
\lim_{n \to \infty} \frac{\Delta \left(\frac{1}{a_n}(\Delta y_n)^\alpha \right) \phi_n}{f(y_{n+1})r_n} = 0, \tag{4.2.18}
\]

and
\[
\frac{\Delta \left(\frac{1}{a_n}(\Delta y_n)^\alpha \right) \phi_n}{f(y_{n+1})r_n} = \sum_{s=n+1}^\infty \frac{\phi_s}{q_s} + \sum_{s=n+1}^\infty \frac{\Delta \left(\frac{1}{a_s}(\Delta y_s)^\alpha \right) \phi_s(\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s}, \tag{4.2.19}
\]

for sufficiently large \(n \).

Proof. Let \(\{y_n\} \) be a non-oscillatory solution of (4.1.1). Without loss of generality, assume that \(y_n > 0 \) for \(n \geq n_0 \). By corollary 4.2.1, it follows that (4.2.17) holds. Similar to the proof of Lemma 4.2.2, it follows that (4.2.5) holds. We rewrite (4.2.5) as

\[
\frac{z_n}{f(y_{n+1})} - \frac{z_{n-1}}{f(y_n)} = \sum_{s=n_0}^\infty \frac{\phi_s}{q_s} - \sum_{s=n_0}^\infty \frac{\Delta \left(\frac{1}{a_s}(\Delta y_s)^\alpha \right) \phi_s(\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s} + \sum_{s=n_0}^\infty \frac{\phi_s}{q_s} + \sum_{s=n_0}^n \frac{(\Delta y_{s-1})^\alpha \phi_s}{f(y_s)p_{s-1}} + \sum_{s=n_0}^n \frac{(\Delta y_{s-1})^\alpha (\Delta \phi_{s-1})}{f(y_s)r_{s-1}}, \tag{4.2.20}
\]

this implies

\[
\frac{z_n}{f(y_{n+1})} = \eta + \sum_{s=n+1}^\infty \frac{\phi_s}{q_s} + \sum_{s=n+1}^\infty \frac{\Delta \left(\frac{1}{a_s}(\Delta y_s)^\alpha \right) \phi_s(\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s} + \sum_{s=n_0}^n \frac{(\Delta y_{s-1})^\alpha \phi_s}{f(y_s)p_{s-1}} + \sum_{s=n_0}^n \frac{(\Delta \phi_{s-1})}{f(y_s)r_{s-1}},
\]

where

\[
\eta = \frac{z_{n_0-1}}{f(y_{n_0})} - \sum_{s=n_0}^\infty \frac{\phi_s}{q_s} - \sum_{s=n_0}^\infty \frac{\Delta \left(\frac{1}{a_s}(\Delta y_s)^\alpha \right) \phi_s(\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s}. \tag{4.2.21}
\]
We claim that $\eta = 0$. If $\eta < 0$, we choose n_2 sufficiently large so that
\[\left| \sum_{s=n_2}^{\infty} \frac{\phi_s}{q_s} \right| \leq -\frac{\eta}{4}, \quad n \geq n_2, \]
and
\[\sum_{s=n_2}^{\infty} \Delta \left(\frac{1}{a_s} (\Delta y_s)^{\alpha} \right) \phi_s (\Delta y_s)^{\beta} g(y_{s+1}, y_s) \frac{1}{f(y_s)f(y_{s+1})r_s} < -\frac{\eta}{4}, \]
we take $n_0 = n_1 = n_2$ in Lemma 4.2.2, so that all assumption of Lemma 4.2.2 hold. From Lemma 4.2.2 and (4.2.16), we obtain
\[\Delta y_n < -k_1^\frac{1}{\alpha} a_1^\frac{1}{\alpha}, \quad \text{for } n \geq n_2, \]
which yields a contradiction to the fact that $y_n > 0$ since (H5) holds. If $\eta > 0$, from (4.2.20), we have
\[\Delta \left(\frac{1}{a_n} (\Delta y_n)^{\alpha} \right) \phi_n \frac{1}{f(y_{n+1})r_n} = \eta > 0, \]
which implies that $\Delta \left(\frac{1}{a_n} (\Delta y_n)^{\alpha} \right) > 0$, eventually. Summing the above inequality from n to ∞, we obtain
\[\Delta y_n < -m^\frac{1}{\alpha} a_m^\frac{1}{\alpha}, \quad m > 0, \]
which contradicts the positivity of $\{y_n\}$ since (H5) holds. Hence the proof of the lemma is complete. \qed

4.3 Results Related to Oscillation Behavior

Theorem 4.3.1. Suppose that $g(u,v) \geq L > 0$ for $u \neq v$ and there exists a positive sequence $\{\phi_n\}$ such that (H5), (H6), (H7), (H8), (H11) and (H12) hold, then equation (4.1.1) is oscillatory.
Proof. To the contrary, let y_n be a non-oscillatory solution of (4.1.1), which may (and do) assume to be eventually positive. That is, $y_n > 0$, for $n \geq M - 1$. For the sake of convenience, let $w_n = \frac{1}{r_n} \Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \phi_n$, for $n \geq M$. Then

$$\Delta w_n = \Delta \left(\frac{1}{r_n} \Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \right) \phi_{n+1} + \frac{1}{r_n} \Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) (\Delta \phi_n),$$

which implies

$$\frac{\Delta w_n}{f(y_{n+1})} = -\frac{\phi_{n+1}}{q_{n+1}} + \frac{(\Delta y_n)^\alpha \phi_{n+1}}{f(y_{n+1})p_n} + \frac{\Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right)}{f(y_{n+1})r_n} (\Delta \phi_n).$$

Since

$$\Delta \left(\frac{w_n}{f(y_{n+1})} \right) = \frac{\Delta w_n}{f(y_{n+1})} - \frac{w_n g(y_{n+1}; y_n)(\Delta y_n)^\beta}{f(y_n)f(y_{n+1})},$$

Summing the above equation from M to $(n - 1)$, we have

$$\frac{\Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \phi_n}{f(y_n)r_n} + \sum_{s=M}^{n-1} \frac{(\Delta y_s)^\alpha \phi_{s+1}}{f(y_{s+1})p_s} + \frac{(\Delta y_s)^\alpha (\Delta \phi_s)}{f(y_{s+1})a_s r_s} - \frac{(\Delta y_{s+1})^\alpha (\Delta \phi_s)}{f(y_{s+1})a_{s+1} r_s} \right)$$

$$+ \sum_{s=M}^{n-1} \frac{(\Delta y_s)^\alpha \phi_s (\Delta y_s)^\beta g(y_{s+1}; y_s)}{f(y_s)f(y_{s+1})r_s} = \frac{\Delta \left(\frac{1}{a_M} (\Delta y_M)^\alpha \right) \phi_M}{f(y_M)r_M}.$$ (4.3.1)

Using Schwarz’s inequality, we have

$$\sum_{s=M}^{n-1} \frac{(\Delta y_s)^\alpha \phi_{s+1}}{f(y_{s+1})p_s} \leq \left(\sum_{s=M}^{n-1} \frac{\phi_{s+1}}{p_s^2 r_s^2 a_s} \right)^{\frac{1}{2}} \left(\sum_{s=M}^{n-1} \frac{a_s r_s^2 \phi_{s+1} (\Delta y_s)^{2\alpha}}{f^2(y_{s+1})} \right)^{\frac{1}{2}},$$ (4.3.2)

$$\sum_{s=M}^{n-1} \frac{(\Delta y_s)^\alpha (\Delta \phi_s)}{f(y_{s+1})a_s r_s} \leq \left(\sum_{s=M}^{n-1} \frac{(\Delta \phi_s)^2}{a_s^2 r_s^2} \right)^{\frac{1}{2}} \left(\sum_{s=M}^{n-1} \frac{(\Delta y_s)^{2\alpha}}{f^2(y_{s+1})} \right)^{\frac{1}{2}},$$ (4.3.3)

$$\sum_{s=M}^{n-1} \frac{(\Delta y_{s+1})^\alpha (\Delta \phi_s)}{f(y_{s+1})a_{s+1} r_s} \leq \left(\sum_{s=M}^{n-1} \frac{(\Delta \phi_s)^2}{a_{s+1}^2 r_s^2} \right)^{\frac{1}{2}} \left(\sum_{s=M}^{n-1} \frac{(\Delta y_{s+1})^{2\alpha}}{f^2(y_{s+1})} \right)^{\frac{1}{2}}.$$ (4.3.4)
Now, we use $g(u, v) \geq L > 0$ for $u \neq v$, (4.3.2), (4.3.3) and (4.3.4) in (4.3.1) to get

$$\frac{\Delta \left(\frac{1}{a_n} (\Delta y_n)^{\alpha} \right)}{f(y_n)} \phi_n + \sum_{s=M}^{n-1} \phi_{s+1} + L \sum_{s=M}^{n-1} \frac{\Delta \left(\frac{1}{a_n} (\Delta y_s)^{\alpha} \right) \phi_s (\Delta y_s)^\beta}{f(y_s) f(y_{s+1}) r_s}
$$

$$- \left(\sum_{s=M}^{n-1} \phi_{s+1} \right)^{\frac{1}{2}} \left(\sum_{s=M}^{n-1} \frac{a_s r_s^2 \phi_{s+1} (\Delta y_s)^{2\alpha}}{f^2(y_{s+1})} \right)^{\frac{1}{2}} + \left(\sum_{s=M}^{n-1} \frac{(\Delta \phi_s)^2}{a_s^2 r_s^2} \right)^{\frac{1}{2}} \left(\sum_{s=M}^{n-1} \frac{(\Delta y_s)^{2\alpha}}{f^2(y_{s+1})} \right)^{\frac{1}{2}}
$$

$$- \left(\sum_{s=M}^{n-1} \frac{(\Delta \phi_s)^2}{a_s^2 r_s^2} \right)^{\frac{1}{2}} \left(\sum_{s=M}^{n-1} \frac{(\Delta y_{s+1})^{2\alpha}}{f^2(y_{s+1})} \right)^{\frac{1}{2}} \leq \frac{\Delta \left(\frac{1}{a_M} (\Delta y_M)^{\alpha} \right) \phi_M}{f(y_M) r_M}.$$ \hspace{1cm} (4.3.5)

Note that

$$L \sum_{s=M}^{n-1} \frac{\Delta \left(\frac{1}{a_n} (\Delta y_s)^{\alpha} \right) \phi_s (\Delta y_s)^\beta}{f(y_s) f(y_{s+1}) r_s}
$$

$$+ \left(\sum_{s=M}^{n-1} \frac{(\Delta \phi_s)^2}{a_s^2 r_s^2} \right)^{\frac{1}{2}} \left(\sum_{s=M}^{n-1} \frac{(\Delta y_s)^{2\alpha}}{f^2(y_{s+1})} \right)^{\frac{1}{2}} \leq \frac{\Delta \left(\frac{1}{a_M} (\Delta y_M)^{\alpha} \right) \phi_M}{f(y_M) r_M}.$$ \hspace{1cm} (4.3.6)

remains bounded below as $n \to \infty$. Thus, taking (H7) into account, we observe from (4.3.5) that $\frac{\Delta \left(\frac{1}{a_n} (\Delta y_n)^{\alpha} \right) \phi_n}{f(y_n) r_n} \to -\infty$ as $n \to \infty$. Hence there exists an integer $M_1 \geq M$ such that $\Delta \left(\frac{1}{a_n} (\Delta y_n)^{\alpha} \right) < 0$, for $n \geq M_1$. That is, $\Delta \left(\frac{1}{a_n} (\Delta y_n)^{\alpha} \right) < -k_2$, $k_2 > 0$, summing the last inequality from m_1 to $(n-1)$, we have $\frac{1}{a_n} (\Delta y_n)^{\alpha} < \frac{1}{a_{m_1}} (\Delta y_{m_1})^{\alpha} - k_2 (n-m_1)$. Therefore $\frac{1}{a_n} (\Delta y_n)^{\alpha} \to -\infty$ as $n \to \infty$, hence there exists $M_2 \geq M_1$, such that

$$\Delta y_n < 0, \text{ for } n \geq M_2.$$ \hspace{1cm} (4.3.6)
We rewrite (4.3.1) as

\[
\frac{\Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \phi_n}{f(y_n)r_n} + \sum_{s=M_2}^{n-1} \frac{\Delta \left(\frac{1}{a_s} (\Delta y_s)^\alpha \right) \phi_s (\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s} = \frac{\Delta \left(\frac{1}{a_M} (\Delta y_M)^\alpha \right) \phi_M}{f(y_M)r_M} - \sum_{s=M}^{M_2-1} \frac{\Delta \left(\frac{1}{a_s} (\Delta y_s)^\alpha \right) \phi_s (\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s}
\]

\[
- \sum_{s=M}^{M_2-1} \frac{\Delta (\Delta y_{s+1})^\alpha (\Delta \phi_s)}{f(y_{s+1})a_{s+1}r_s} + \sum_{s=M}^{M_2-1} \left(\frac{\phi_{s+1}}{p_s} - \frac{\Delta \phi_s}{a_sr_s} \right) \frac{(\Delta y_s)^\alpha}{f(y_{s+1})}
\]

and use (H8), (4.3.1) and (4.3.6) to find as an integer \(M_3 \geq M_2 \) such that

\[
\frac{\Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \phi_n}{f(y_n)r_n} + \sum_{s=M_2}^{n-1} \frac{\Delta \left(\frac{1}{a_s} (\Delta y_s)^\alpha \right) \phi_s (\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s} \leq -k_3, \ n \geq M_3
\]

where \(k_3 \) is a positive constant. Hence

\[
- \frac{\Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \phi_n}{f(y_n)r_n} - \sum_{s=M_2}^{n-1} \frac{\Delta \left(\frac{1}{a_s} (\Delta y_s)^\alpha \right) \phi_s (\Delta y_s)^\beta g(y_{s+1}, y_s)}{f(y_s)f(y_{s+1})r_s} \geq k_3. \quad (4.3.7)
\]

Let \(u_n = -\frac{1}{r_n} \Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \phi_n \). Then (4.3.7) becomes

\[
u_n \geq k_3 f(y_n) + \sum_{s=M_3}^{n} \frac{f(y_n)(- (\Delta y_s)^\beta g(y_{s+1}, y_s))}{f(y_s)f(y_{s+1})} u_s, \ n \geq M_3, \quad (4.3.8)\]

also let \(v_n = k_3 f(y_n) + \sum_{s=M_3}^{n} \frac{f(y_n)(- (\Delta y_s)^\beta g(y_{s+1}, y_s))}{f(y_s)f(y_{s+1})} v_s \).

(4.3.9)

Using Lemma 4.2.1, from (4.3.8) and (4.3.9) we have,

\[
u_n \geq u_n. \quad (4.3.10)\]

Dividing (4.3.9) by \(f(y_n) \) and then applying the forward difference operator \(\Delta \), it is easy to verify that \(\Delta v_n \equiv 0 \). Therefore

\[
u_n \geq v_n = k_3 f(y_{M_3}), \ n \geq M_3,
\]

57
this implies

\[\Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right) \leq -k_3 f(y_{M_3}) \frac{r_n}{\phi_n}. \]

Summing the last inequality from \(m_2 \) to \((n - 1) \), we have

\[\frac{1}{a_n} (\Delta y_n)^\alpha \leq \frac{1}{a_{m_2}} (\Delta y_{m_2})^\alpha - k_3 f(y_{M_3}) \sum_{s=m_2}^{n-1} \frac{r_s}{\phi_s}. \]

In view of (H6), \(\frac{1}{a_n} (\Delta y_n)^\alpha \to -\infty \), as \(n \to \infty \). That is, \(\Delta y_n < -k_4 a_n^{1/\alpha} \).

Summing the last inequality from \(M_3 \) to \((n - 1) \), we obtain

\[y_n < y_{M_3} - k_4^{1/\alpha} \sum_{s=M_3}^{n-1} a_s^{1/\alpha}. \]

In view of (H5), we have \(y_n \to -\infty \) as \(n \to \infty \), which yields a contradiction to the fact that \(\{y_n\} \) is eventually positive. The proof is similar to the case when \(\{y_n\} \) is eventually negative. This completes the proof.

Theorem 4.3.2. Suppose that

(i) \(0 < \int_{\epsilon}^{\infty} \frac{dy}{f(y)^{1/\alpha}} < \infty \), \(\int_{-\infty}^{-\epsilon} \frac{dy}{f(y)^{1/\alpha}} < \infty \), for every \(\epsilon > 0 \),

(ii) \(\sum_{s=n_0}^{\infty} \phi_s/q_s \) and \(\sum_{s=n_0}^{\infty} r_s/\phi_s \) exists, and

\[\lim_{n \to \infty} \sum_{s=n_0}^{n} a_{s+1}^{1/\alpha} \left(\sum_{l=n_1}^{n} \frac{r_l}{\phi_l} \sum_{l=n+1}^{\infty} \frac{\phi_l}{q_l} \right)^{1/\alpha} = \infty, \quad (4.3.11) \]

then equation (4.1.1) is oscillatory.

Proof. Suppose to the contrary. Without loss of generality, we assume that (4.1.1) has an eventually positive solution. Under our assumption, Lemma 4.2.3 is true. Let \(\{y_n\} \) be an eventually positive solution of (4.1.1), then (4.2.13) hold.
Since f is non-decreasing and the second sum in (4.2.19) is non-negative, here
\[
\frac{\Delta \left(\frac{1}{a_n} (\Delta y_n)^\alpha \right)}{f(y_{n+1})} \geq \frac{r_n}{\phi_n} \sum_{s=n+1}^{\infty} \phi_s.
\]
Summing it from n_1 to n, we obtain
\[
\frac{\Delta y_{n+1}}{f(y_{n+1})^\frac{1}{\alpha}} > a_{n+1} \left(\sum_{s=n_1}^{n} \frac{r_t}{\phi_t} \sum_{l=n+1}^{\infty} \frac{\phi_l}{l} \right)^{\frac{1}{\alpha}}.
\]
Summing it from n_0 to n, we have
\[
\sum_{s=n_0}^{n} \frac{\Delta y_{n+1}}{f(y_{n+1})^\frac{1}{\alpha}} > \sum_{s=n_0}^{n} a_{s+1} \left(\sum_{t=n_1}^{n} \frac{r_t}{\phi_t} \sum_{l=n+1}^{\infty} \frac{\phi_l}{l} \right)^{\frac{1}{\alpha}}.
\]
We define $w(t) = y_{n+1} + (t - n) \Delta y_{n+1}$, $n + 1 \leq t \leq n + 2$. If $\Delta y_{n+1} > 0$, then $y_{n+1} \leq w(t) \leq y_{n+2}$; if $\Delta y_{n+1} < 0$, then $y_{n+2} \leq w(t) \leq y_{n+1}$ and $dw = \Delta y_{n+1}$.

Let $H(y) = \int_y^\infty \frac{dw}{f(w(t))}^\frac{1}{\alpha}$,
then $H(y_{n_0}) = \int_{w(n_0)}^{\infty} \frac{dy}{f(y)^\frac{1}{\alpha}} \geq \int_{n_0}^{n+1} \frac{dr}{f(w(t))^\frac{1}{\alpha}} \geq \sum_{s=n_0}^{n} \frac{\Delta y_{s+1}}{f(y_{s+1})^\frac{1}{\alpha}}$
\[
\geq \sum_{s=n_0}^{n} a_{s+1} \left(\sum_{t=n_1}^{n} \frac{r_t}{\phi_t} \sum_{l=n+1}^{\infty} \frac{\phi_l}{l} \right)^{\frac{1}{\alpha}},
\]
which contradicts (4.3.11). Similarly, we can prove that (4.1.1) does not posses an eventually negative solution. The proof is complete.

\textbf{Theorem 4.3.3.} Suppose that $g(u, v) \geq L > 0$ for $u \neq v$ and there exists a positive sequence $\{\phi_n\}$ such that (H5), (H6), (H7), (H8), (H12) and (H13) hold. Then equation (4.1.1) is oscillatory.

\textbf{Proof.} We proceed as in the proof of Theorem 3.1 to obtain (3.1). Then we use Schwarz’s inequality, to get
\[
\sum_{s=M}^{n-1} \left(\frac{\phi_{s+1}}{p_s} - \frac{\Delta \phi_s}{a_s r_s} \right) (\Delta y_s)^\alpha \leq \left(\sum_{s=M}^{n-1} \left(\frac{\phi_{s+1}}{p_s} - \frac{\Delta \phi_s}{a_s r_s} \right)^2 \frac{1}{p_s \phi_s} \right)^{\frac{1}{2}} \left(\sum_{s=M}^{n-1} \frac{p_s \phi_s (\Delta y_s)^{2\alpha}}{f^2(y_{s+1})} \right)^{\frac{1}{2}},
\]
and (4.3.4). Hence, an inequality similar to (4.3.5) holds. The rest of the proof follows Theorem 4.3.1. The proof is complete.

4.4 Examples

Example 4.4.1. Consider the difference equation

\[
\Delta \left(\frac{1}{n+1} \Delta \left(\frac{(n-1)^2}{n} (\Delta y_{n-1})^{\frac{2}{3}} \right) \right) - \frac{1}{n-1} (\Delta y_{n-1})^{\frac{2}{3}} + \frac{(n+2)(n+4)}{n} \left(y_n^5 + \frac{y_n}{3} \right) = 0,
\]

(E.4.1)

\(n \geq 2 \) and \(\phi_n = \frac{n+1}{n+2} \). Here \(r_n = n+2 \), \(a_n = \frac{n+1}{n^2} \), \(p_n = n \), \(q_n = \frac{n}{n+1} \).

\[
\frac{\phi_n}{r_n} = \frac{n}{(n+1)(n+4)}, \quad \sum_{n=2}^{\infty} a_n^\frac{3}{2} = \sum_{n=2}^{\infty} \left(\frac{n+1}{n^2} \right)^{\frac{3}{2}} = \infty, \quad \sum_{n=2}^{\infty} \frac{\phi_n}{r_n} = \sum_{n=2}^{\infty} \frac{(n+2)^2}{n+1} = \infty, \quad \sum_{n=2}^{\infty} \frac{\phi_n}{p_n} = \sum_{n=2}^{\infty} \frac{1}{(n+2)^3} < \infty, \quad \sum_{n=2}^{\infty} \frac{(\Delta \phi_n)^2}{p_n^2 a_n^2} = \sum_{n=2}^{\infty} \frac{n^4}{(n+1)^2(n+2)^2(n+3)^2} < \infty.
\]

All the conditions of Theorem 4.3.1 are satisfied. Hence equation (E.4.1) is oscillatory.

Example 4.4.2. Consider the difference equation

\[
\Delta \left(\frac{(n-1)n(n+1)^2(n+2)}{12} \Delta \left(\frac{n(n+1)}{n-1} (\Delta y_{n-1})^{\frac{2}{3}} \right) \right) - \frac{1}{3(n-1)} (\Delta y_{n-1})^{\frac{2}{3}} + \frac{(n^2+3n+2)}{n+3} \left(y_n^5 + \frac{y_n}{3} \right) = 0,
\]

(E.4.2)

\(n \geq 2 \) and \(\phi_n = \frac{6}{n(n+1)(n+2)} \). Here \(r_n = \frac{12}{n(n+1)(n+2)^2(n+3)} \), \(a_n = \frac{n}{(n+1)(n+2)}, \quad p_n = 3n, \quad q_n = \frac{n+3}{n^2+3n+2} \).
\[\sum_{n=2}^{\infty} a_n^2 = \sum_{n=2}^{\infty} \left(\frac{n}{(n+1)(n+2)} \right)^2 = \infty, \quad \sum_{n=2}^{\infty} r_n = \sum_{n=2}^{\infty} \frac{2}{(n+2)(n+3)} < \infty, \]
\[\sum_{n=2}^{\infty} \phi_n q_n = \sum_{n=2}^{\infty} \frac{6}{n(n+3)} < \infty. \] All the conditions of Theorem 4.3.2 are satisfied.

Hence equation (E.4.2) is oscillatory.

Example 4.4.3. Consider the difference equation

\[\Delta \left(\frac{1}{n+1} \Delta \left(\frac{n^2}{n+1} (\Delta y_{n-1}) \right) \right) - \frac{1}{n+1} (\Delta y_{n-1}) \]
\[+ \frac{n^2}{n+1} y_n^7 = 0, \quad (E.4.3) \]

\(n \geq 2 \) and \(\phi_n = \frac{n}{n+1} \). Here \(r_n = n+2 \), \(a_n = \frac{n+2}{(n+1)^2} \), \(p_n = n+2 \), \(q_n = \frac{n+1}{n^2} \), \(\sum_{n=2}^{\infty} a_n = \sum_{n=2}^{\infty} \frac{n+2}{(n+1)^2} = \infty, \)
\[\sum_{n=2}^{\infty} r_n = \sum_{n=2}^{\infty} \frac{(n+1)(n+2)}{n} = \infty, \]
\[\sum_{n=2}^{\infty} \phi_n q_n = \sum_{n=2}^{\infty} \frac{n^3}{(n+1)^2} = \infty, \]
\[\frac{\phi_{n+1}}{p_n} \geq \frac{\Delta \phi_n}{a_n r_n} \Rightarrow (n+2) \geq 1, \]
\[\sum_{n=2}^{\infty} \left(\frac{\Delta \phi_n}{p_n} \right)^2 a_n^2 = \sum_{n=2}^{\infty} \frac{(n+1)^2}{n(n+2)^6} < \infty, \]
\[\sum_{n=2}^{\infty} \left(\frac{\phi_{n+1}}{p_n} - \frac{\Delta \phi_n}{a_n r_n} \right) \frac{1}{p_n \phi_n} = \sum_{n=2}^{\infty} \frac{(n+1)^3}{n(n+2)^4} < \infty. \] All the conditions of Theorem 4.3.3 are satisfied. Hence equation (E.4.3) is oscillatory.