Fig 1.1: A comparison of the key features of the band structures of metals, semiconductors, and insulators 3

Fig 1.2: Scheme of semiconductor energy levels as a function of material size. Bulk semiconductors, nanoparticles of different sizes, and molecules are compared. 4

Fig 1.3: (a) The Bohr radius of a Mott-Wannier exciton and (b) different morphologies of 0D, 1D and 2D nanostructures. 6

Fig 1.4: A schematic comparison of lattice of (a) bulk crystal (b) nanocrystals with tensile surface strain and (c) compressive lattice strain (due to vacancies marked as ‘V’) 7

Fig 1.5: Unit cell representation of (a) Zinc Blend and (b) Wurtzite structures. 9

Fig 1.6: Schematic representation of the ‘bottom up’ and top down’ synthesis processes of nanomaterials 15

Fig 2.1: The basic geometry of an X-ray diffractometer 38

Fig 2.2: A simple geometrical picture for the scattering of an X-ray beam by planes of atoms in a crystal 39

Fig 2.3: (a) Normalised XRD pattern of CdS nanoparticles and nanorods (b) W-H plot and (c) the schematic diagram of Cd-terminated CdS quantum dot 41

Fig 2.4: (a) XRD of samples, (b) TGA of unannealed CdS nanoparticles and (c) EDS spectra of the samples. 46
Fig 2.5: (a) XRD patterns and (b) W-H Plots of ZnS nanoparticles and nanorods

Fig 2.6: Schematic diagrams of (a) SEM and (b) TEM

Fig 2.7: A representation of X-ray emission in a scanning electron microscope.

Fig 2.8: The SEM images of CdS (a) nanoparticles and (b) nanorods. The EDS patterns of nanoparticles and nanorods are shown in (c) and (d), respectively.

Fig 2.9: The HR-TEM and SAED images of CdS (a) (c) nanorods and (b) (d) nanoparticles. The inset of (b) shows a single spherical CdS nanoparticle.

Fig 2.10: The SEM images of ZnS (a) nanoparticles and (b) nanorods. (c) and (d) are the EDS spectra of nanoparticles and nanorods, respectively.

Fig 2.11: The TEM and SAED images of ZnS (a) (c) nanoparticles and (b) (d) nanorods

Fig 2.12: TEM and SAED images of (a) (d) sample A, (b) (e) sample B and (c) (f) sample C

Fig 2.13: Schematic representation of (a) wurtzite and (b) zinc blende CdS. The HR TEM images of the atomic chains of (c) wurtzite and (d) zinc blende CdS are also shown.

Fig 2.14: The HR-TEM images of (a) sample A (b) sample B and (c) sample C. The values of d spacing and corresponding plains are marked. The arrows indicate the strained lattice.

Fig 3.1: (a) The block diagram of a UV/Vis spectrometer and (b) electron transitions in ultraviolet/visible spectroscopy.

Fig 3.2: Energy level diagram of zinc blende and wurtzite materials. The splitting due to crystal field (Δ_C) and spin orbit interaction (Δ_{SO}) is shown.

Fig 3.3: The UV/Vis absorption spectra of CdS nanoparticles and nanorods.

Fig 3.4: (a) Reflectance spectra of CdS nanoparticles and nanorods and (b) the Tauc plot to
determine bandgap energy.

Fig 3.5: Theoretically calculated values of bandgap energies of CdS nanoparticles and Nanorods

Fig 3.6: (a) Tauc plots and (b) absorption peaks of CdS nanoparticles annealed at 350^0C (sample B) and 500^0C (sample C).

Fig 3.7: (a) Absorption spectra (b) Tauc plots and (c) the EMA predicted bandgap energies of ZnS nanoparticles and nanorods. In (c) the energy level diagram of zinc blende and wurtzite semiconductors are shown.

Fig 3.8: Block diagram of a photoluminescence spectrometer.

Fig 3.9: PL emission spectra of CdS nanoparticles and nanorods.

Fig 3.10: PL emission spectra of CdS nanoparticles annealed at 350^0C (sample B) and 500^0C.

Fig 3.11: Diagrammatic representation of all the possible energy transitions in annealed and unannealed CdS nanostructures.

Fig 3.12: PL emission spectra of ZnS nanoparticles and nanorods.

Fig 3.13: A diagrammatic representation of the possible energy transitions in ZnS nanoparticles and nanorods.

Fig 4.1: Energy-level diagram showing the origin of different types of Raman signals.

Fig 4.2: Schematic of micro-Raman spectrometer

Fig 4.3: (a) Micro Raman spectra of ZnS nanoparticles and nanorods and the Gaussian resolved Raman peaks corresponding to (b) 1TO and (c) 1LO modes. The solid curves show
the theoretical modes

Fig 4.4: Micro Raman spectra of CdS nanoparticles and nanorods

Fig 4.5: The Gaussian resolved Raman peaks of CdS (a) nanoparticles and (b) nanorods corresponding to 1LO mode. The solid curves show the theoretical modes

Fig 4.6. (a) The Raman spectra of the samples and (b) the experimental and theoretical values of Huang-Rhys parameter.

Fig 5.1: The equivalent circuit model used in the present study

Fig 5.2: The variations in (a) real and (b) imaginary parts of dielectric constant of CdS nanorods and nanoparticles with frequency.

Fig 5.3: Frequency dependence of the real part of electric modulus (M') of (a) CdS nanoparticles and (b) CdS nanorods.

Fig 5.4: Frequency dependence of the imaginary part of electric modulus (M'') of (a) CdS nanoparticles and (b) CdS nanorods.

Fig 5.5: The conductivity relaxation time plotted against T^{-1} for CdS nanorods and nanoparticles (inset).

Fig 5.6: The impedance spectra of (a) nanoparticles and (b) nanorods at different temperatures.

Fig 5.7: The grain boundary resistance is plotted against T^{-1} for CdS nanorods and nanoparticles (inset).

Fig 5.8: Normalized imaginary parts of electric modulus and complex impedance as a function of frequency for (a) CdS nanoparticles and (b) nanorods.
Fig 5.9: The scaling behavior of M'' at different temperatures for (a) CdS nanoparticles and (b) CdS nanorods.

Fig 5.10: The frequency dependence of the (a) (c) real and (b) (d) imaginary parts of dielectric constant of samples B and C, respectively.

Fig 5.11: (a) and (c) show the impedance plot of samples B and C respectively. (b) and (d) shows the temperature dependence of grain and grain boundary resistance of the samples.

Fig 5.12: The dispersion of the real parts of dielectric constant of (a) ZnS nanoparticles and (b) nanorods. The imaginary parts of nanoparticles and rods are shown in (c) and (d), respectively.

Fig 5.13: Impedance spectra of (a) ZnS nanoparticles and (b) nanorods at different temperatures

Fig 5.14: The grain boundary resistance is plotted against T^{-1} for CdS nanorods and nanoparticles (inset)

Fig 5.15: Frequency dependance of the real part of electric modulus (M') of (a) ZnS nanoparticles and (c) ZnS nanorods. (b) and (d) shows the imaginary parts of electric modulus (M'') of nanoparticles and nanorods, respectively.

Fig 5.16: The temperature dependence of conductivity relaxation time of ZnS nanoparticles and rods

Fig 6.1: The temperature dependence of ac conductivity of (a) CdS nanorods and (b) CdS
nanoparticles.

Fig 6.2: (a) The temperature dependence of frequency exponent of CdS nanoparticles. In the inset is that of CdS nanorods. The solid lines are the theoretical fit.

Fig 6.3: Frequency dependence of ac conductivity of (a) CdS nanoparticles and (b) CdS nanorods at three different temperatures. The solid lines are the frequency dependent conductivities predicted by CBH model.

Fig 6.4 The temperature dependence of ac conductivity of ZnS nanorods and nanoparticles.

Fig 6.5 (a) Variation of frequency exponent with temperature for a fixed frequency $\omega = 10000$ Hz. The solid line shows the theoretical fits to the experimental values and (b) the frequency dependence of ac conductivity of ZnS nanorods and nanoparticles. Solid lines are the theoretical fits to the experimental values.

Fig 6.6: Variation of dc conductivities of nanoparticles and nanorods of (a) CdS and (b) ZnS with temperature. Solid lines represent the theoretically predicted values of conductivity.