CHAPTER IV

\(\omega\)-HOMEOMORPHISMS IN TOPOLOGICAL SPACES

4.1. Introduction

In this chapter we first introduce \(\omega\)-closed maps in topological spaces and then we introduce and study \(\omega\)-homeomorphisms which are weaker than homeomorphisms. We prove that gc-homeomorphism and \(\omega\)-homeomorphism are independent. We also introduce \(\omega^*\)-homeomorphisms and prove that the set of all \(\omega^*\)-homeomorphisms forms a group under the operation composition of maps. In this chapter, we further introduce and study the new concepts namely \(\omega\)-compactness, \(\omega\)-connectedness, \(\omega\)-regular spaces and \(\omega\)-normal spaces in topological spaces.

4.2. \(\omega\)-closed maps

Malghan [71] introduced the concept of generalized closed maps in topological spaces. Devi [21] introduced and studied sg-closed maps gs-closed maps. Recently, Gnanambal [48] defined gpr-closed maps and studied some of their properties. In this section, we introduce \(\omega\)-closed
Definition 4.2.1 A map \(f: (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(\omega \)-closed if the image of every closed set in \((X, \tau) \) is \(\omega \)-closed in \((Y, \sigma) \).

Example 4.2.2 Let \(X = Y = \{ a, b, c \} \), \(\tau = \{ \emptyset, \{ a \}, \{ b \}, \{ a, b \}, X \} \) and \(\sigma = \{ \emptyset, \{ a \}, \{ b, c \}, Y \} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be the identity map. Then \(f \) is an \(\omega \)-closed map.

Proposition 4.2.3 A mapping \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(\omega \)-closed if and only if \(\omega\text{-cl}(f(A)) \subseteq f(\text{cl}(A)) \) for every subset \(A \) of \((X, \tau) \).

Proof: Suppose that \(f \) is \(\omega \)-closed and \(A \subseteq X \). Then \(f(\text{cl}(A)) \) is \(\omega \)-closed in \((Y, \sigma) \). We have \(f(A) \subseteq f(\text{cl}(A)) \) and by Propositions 2.3.9 and 2.3.10, \(\omega\text{-cl}(f(A)) \subseteq \omega\text{-cl}(f(\text{cl}(A))) = f(\text{cl}(A)) \).

Conversely, let \(A \) be any closed set in \((X, \tau) \). Then \(A = \text{cl}(A) \) and so \(f(A) = f(\text{cl}(A)) \supseteq \omega\text{-cl}(f(A)) \), by hypothesis. We have \(f(A) \subseteq \omega\text{-cl}(f(A)) \) by Proposition 2.3.9. Therefore \(f(A) = \omega\text{-cl}(f(A)) \). i.e., \(f(A) \) is \(\omega \)-closed by Proposition 2.3.9 and hence \(f \) is \(\omega \)-closed.

Proposition 4.2.4 Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function such that \(\omega\text{-cl}(f(A)) \subseteq f(\text{cl}(A)) \) for every subset \(A \subseteq X \). Then the image \(f(A) \) of a closed set \(A \) in \((X, \tau) \) is \(\tau_{\omega} \)-closed in \((Y, \sigma) \).

Proof: Let \(A \) be a closed set in \((X, \tau) \). Then by hypothesis \(\omega\text{-cl}(f(A)) \subseteq f(\text{cl}(A)) = f(A) \) and so \(\omega\text{-cl}(f(A)) = f(A) \). Therefore \(f(A) \) is \(\tau_{\omega} \)-closed in \((Y, \sigma) \).

Proposition 4.2.5 If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is an \(\omega \)-closed mapping then for each subset \(A \) of \((X, \tau) \), \(\text{cl}(\text{int}(f(A))) \subseteq f(\text{cl}(A)) \).

Proof: Let \(f \) be an \(\omega \)-closed map and \(A \subseteq X \). Then since \(\text{cl}(A) \) is a closed set in \((X, \tau) \), we have \(f(\text{cl}(A)) \) is \(\omega \)-closed and hence pre-closed by
Proposition 2.2.7. Therefore, cl(int(f(cl(A)))) ⊆ f(cl(A)). i.e., cl(int(f(A)) ⊆ f(cl(A)).

The converse of this proposition need not be true in general as seen from the following example.

Example 4.2.6 Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then for each subset $A \subseteq X$, we have cl(int(f(A))) ⊆ f(cl(A)), but f is not an ω-closed map.

Theorem 4.2.7 A map $f: (X, x) \rightarrow (Y, a)$ is ω-closed if and only if for each subset S of (Y, σ) and for each open set U containing $f^{-1}(S)$ there is an ω-open set V of (Y, σ) such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Suppose that f is ω-closed. Let $S \subseteq Y$ and U be open set of (X, τ) such that $f^{-1}(S) \subseteq U$. Then $V = (f(U^c))^c$ is an ω-open set containing S such that $f^{-1}(V) \subseteq U$.

For the converse, let F be a closed set of (X, τ). Then $f^{-1}((f(F))^c) \subseteq F^c$ and F^c is open. By assumption, there exists an ω-open set V of (Y, σ) such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$. Since V^c is ω-closed, $f(F)$ is ω-closed and therefore f is ω-closed.

Proposition 4.2.8 If $f: (X, \tau) \rightarrow (Y, \sigma)$ is irresolute ω-closed and A is an ω-closed subset of (X, τ), then $f(A)$ is ω-closed.

Proof: Let U be a semi-open set in (Y, σ) such that $f(A) \subseteq U$. Since f is irresolute, $f^{-1}(U)$ is a semi-open set containing A. Hence $cl(A) \subseteq f^{-1}(U)$ as A is ω-closed in (X, τ). Since f is ω-closed, $f(cl(A))$ is an ω-closed set contained in the semi-open set U, which implies that $cl(f(cl(A)) \subseteq U$ and hence $cl(f(A)) \subseteq U$. Therefore, $f(A)$ is an ω-closed set.

The following example shows that the composition of two ω-closed maps need not be ω-closed.
Example 4.2.9 Let (Y, σ) and f be as in Example 4.2.2. Let $Z = \{a, b, c\}$ and $\eta = \{\phi, \{a, c\}, Z\}$. Define, $g : (Y, \sigma) \to (Z, \eta)$ by $g(a) = g(b) = b$ and $g(c) = a$. Then both f and g are ω-closed maps but their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is not an ω-closed map, since for the closed set $\{c\}$ in (X, τ), $(g \circ f)(\{c\}) = \{a\}$, which is not an ω-closed set in (Z, η).

Corollary 4.2.10 Let $f : (X, \tau) \to (Y, \sigma)$ be ω-closed and $g : (Y, \sigma) \to (Z, \eta)$ be ω-closed and irresolute, then their composition $g \circ f : (X, \tau) \to (Z, \sigma)$ is ω-closed.

Proof: Let A be a closed set of (X, τ). Then by hypothesis $f(A)$ is an ω-closed set in (Y, σ). Since g is both ω-closed and irresolute by Proposition 4.2.8, $g(f(A)) = (g \circ f)(A)$ is ω-closed in (Z, η) and therefore $g \circ f$ is ω-closed.

Proposition 4.2.11 Let $f : (X, \tau) \to (Y, \sigma)$, $g : (Y, \sigma) \to (Z, \eta)$ be ω-closed maps and (Y, σ) be a T_ω space. Then their composition $g \circ f : (X, \tau) \to (Z, \sigma)$ is ω-closed.

Proof: Let A be a closed set of (X, τ). Then by assumption $f(A)$ is ω-closed in (Y, σ). Since (Y, σ) is a T_ω space, $f(A)$ is closed in (Y, σ) and again by assumption $g(f(A))$ is ω-closed in (Z, η). i.e., $(g \circ f)(A)$ is ω-closed in (Z, η) and so $g \circ f$ is ω-closed.

Proposition 4.2.12 If $f : (X, \tau) \to (Y, \sigma)$ is ω-closed, $g : (Y, \sigma) \to (Z, \tau)$ is g-closed (resp. pre closed, rg-closed and gp-closed) and (Y, σ) is a T_ω space, then their composition $g \circ f : (X, \tau) \to (Z, \sigma)$ is g-closed (resp. preclosed, rg-closed, and gp-closed).

Proof: Similar to Proposition 4.2.11.

Proposition 4.2.13 Let $f : (X, \tau) \to (Y, \sigma)$ be a closed map and $g : (Y, \sigma) \to (Z, \eta)$ be an ω-closed map, then their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is ω-closed.

Proof: Similar to Proposition 4.2.11.
Remark 4.2.14 If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\omega \)-closed and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) is closed, then their composition need not be an \(\omega \)-closed map as seen from the following example.

Example 4.2.15 Let \((Y, \sigma)\) and \(f\) be as in Example 4.2.2. Let \(Z = \{a, b, c\}\) and \(\eta = \{\phi, \{b\}, \{c\}, \{b, c\}, Z\}\). Define \(g : (Y, \sigma) \rightarrow (Z, \eta)\) by \(g(a) = g(b) = a\) and \(g(c) = b\). Then \(f\) is an \(\omega \)-closed map and \(g\) is a closed map. But their composition \(g \circ f : (X, \tau) \rightarrow (Z, \eta)\) is not an \(\omega \)-closed map, since for the closed set \(\{c\}\) in \((X, \tau)\), \((g \circ f)(\{c\}) = \{b\}\), which is not \(\omega \) closed in \((Z, \eta)\).

Theorem 4.2.16 Let \(f : (X, \tau) \rightarrow (Y, \sigma)\) and \(g : (Y, \sigma) \rightarrow (Z, \eta)\) be two mappings such that their composition \(g \circ f : (X, \tau) \rightarrow (Y, \sigma)\) be an \(\omega \)-closed mapping. Then the following statements are true.

i) If \(f\) is continuous and surjective, then \(g\) is \(\omega \)-closed.

ii) If \(g\) is \(\omega \)-irresolute and injective, then \(f\) is \(\omega \)-closed.

iii) If \(f\) is \(g\)-continuous, surjective and \((X, \tau)\) is a \(T_{1/2}\) space then \(g\) is \(\omega \)-closed.

iv) If \(g\) is strongly \(\omega \)-continuous and injective, then \(f\) is closed.

Proof:

i). Let \(A\) be a closed set of \((Y, \sigma)\). Since \(f\) is continuous, \(f^{-1}(A)\) is closed in \((X, \tau)\) and since \(g \circ f\) is \(\omega \)-closed, \((g \circ f)(f^{-1}(A))\) is \(\omega \)-closed in \((Z, \sigma)\). i.e., \(g(A)\) is \(\omega \)-closed in \((Z, \sigma)\), since \(f\) is surjective. Therefore \(g\) is an \(\omega \)-closed map.

ii). Let \(B\) be a closed set of \((X, \tau)\). Since \(g \circ f\) is \(\omega \)-closed, \((g \circ f)(B)\) is \(\omega \)-closed in \((Z, \eta)\). Since \(g\) is \(\omega \)-irresolute, \(g^{-1}((g \circ f)(B))\) is \(\omega \)-closed in \((Y, \sigma)\). i.e., \(f(B)\) is \(\omega \)-closed in \((Y, \sigma)\), since \(g\) is injective. Thus \(f\) is an \(\omega \)-closed map.

iii). Let \(C\) be a closed set of \((Y, \sigma)\). Since \(f\) is \(g\)-continuous, \(f^{-1}(A)\) is \(g\)-closed in \((X, \tau)\). Since \((X, \tau)\) is a \(T_{1/2}\) space, \(f^{-1}(A)\) is closed in \((X, \tau)\) and so as in i), \(g\) is an \(\omega \)-closed map.
iv). Let D be a closed set of (X, τ). Since $g \circ f$ is ω-closed, $(g \circ f)(D)$ is ω-closed in (Z, η). Since g is strongly ω-continuous, $g^{-1}((g \circ f)(D))$ is closed in (Y, σ). i.e., $f(D)$ is closed in (Y, σ), since g is injective. Therefore f is a closed map.

Regarding the restriction f_A of a map $f : (X, \tau) \to (Y, \sigma)$ to a subset A of (X, τ), we have the following:

Theorem 4.2.17 Let (X, τ) and (Y, σ) be any topological spaces. Then

i) If $f : (X, \tau) \to (Y, \sigma)$ is ω-closed and A is a closed subset of (X, τ), then $f_A : (A, \tau_A) \to (Y, \sigma)$ is ω-closed.

ii) If $f : (X, \tau) \to (Y, \sigma)$ is irresolute and ω-closed and A is an open and ω-closed set of (X, τ), then $f_A : (A, \tau_A) \to (Y, \sigma)$ is ω-closed.

iii) If $f : (X, \tau) \to (Y, \sigma)$ is ω-closed (resp. closed) and $A = f^{-1}(B)$ for some closed (resp. ω-closed) set B of (Y, σ), then $f_A : (A, \tau_A) \to (Y, \sigma)$ is ω-closed.

Proof:

i). Let B be a closed set of A. Then $B = A \cap F$ for some closed set F of (X, τ) and so B is closed in (X, τ). By hypothesis, $f(B)$ is ω-closed in (Y, σ). But $f(B) = f_A(B)$ and therefore f_A is an ω-closed map.

ii). Let C be a closed set in A. Then C is ω-closed in A. Since A is both open and ω-closed, C is ω-closed in (X, τ), by Proposition 2.2.35. Since f is both irresolute and ω-closed, $f(C)$ is ω-closed in (Y, σ) by Proposition 4.2.8. Since $f(C) = f_A(C)$, f_A is an ω-closed map.

iii). Let D be a closed set of A. Then $D = A \cap H$ for some closed set H in (X, τ). Now $f_A(D) = f(D) = f(A \cap H) = f(f^{-1}(B) \cap H) = B \cap f(H)$. Since f is ω-closed, $f(H)$ is ω-closed in (Y, σ) and so $B \cap f(H)$ is ω-closed in (Y, σ) by Corollary 2.2.21. Therefore, f_A is an ω-closed map.

In the next theorem we show that normality is preserved under continuous ω-closed maps.
Theorem 4.2.18 If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is a continuous, \(\omega \)-closed map from a normal space \((X, \tau)\) onto a space \((Y, \sigma)\), then \((Y, \sigma)\) is normal.

Proof: Let \(A \) and \(B \) be two disjoint closed subsets of \((Y, \sigma)\). Since \(f \) is continuous, \(f^{-1}(A) \) and \(f^{-1}(B) \) are disjoint closed sets of \((X, \tau)\). Since \((X, \tau)\) is normal, there exist disjoint open sets \(U \) and \(V \) of \((X, \tau)\) such that \(f^{-1}(A) \subseteq U \) and \(f^{-1}(B) \subseteq V \). Since \(f \) is \(\omega \)-closed, by Theorem 4.2.7, there exist disjoint \(\omega \)-open sets \(G \) and \(H \) in \((Y, \sigma)\) such that \(A \subseteq G \), \(B \subseteq H \), \(f^{-1}(G) \subseteq U \) and \(f^{-1}(H) \subseteq V \). Since \(U \) and \(V \) are disjoint, \(\text{int}(G) \) and \(\text{int}(H) \) are disjoint open sets in \((Y, \sigma)\). Since \(A \) is closed, \(A \) is semi-closed and therefore we have by Proposition 2.4.6, \(A \subseteq \text{int}(G) \). Similarly \(B \subseteq \text{int}(H) \) and hence \((Y, \sigma)\) is normal.

Analogous to an \(\omega \)-closed map, we define an \(\omega \)-open map as follows:

Definition 4.2.19 A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be an \(\omega \)-open map if the image \(f(A) \) is \(\omega \)-open in \((Y, \sigma)\) for each open set \(A \) in \((X, \tau)\).

Proposition 4.2.20 For any bijection \(f : (X, \tau) \rightarrow (Y, \sigma) \), the following statements are equivalent:

i) \(f^{-1} : (Y, \sigma) \rightarrow (X, \tau) \) is \(\omega \)-continuous,

ii) \(f \) is an \(\omega \)-open map and

iii) \(f \) is an \(\omega \)-closed map.

Proof: i) \(\Rightarrow \) ii) : Let \(U \) be an open set of \((X, \tau)\). By assumption \((f^{-1})^{-1}(U) = f(U)\) is \(\omega \)-open in \((Y, \sigma)\) and so \(f \) is \(\omega \)-open.

ii) \(\Rightarrow \) iii) : Let \(F \) be a closed set of \((X, \tau)\). Then \(F^c \) is open in \((X, \tau)\). By assumption, \(f(F^c) \) is \(\omega \)-open in \((Y, \sigma)\). i.e., \(f(F^c) = (f(F))^c \) is \(\omega \)-open in \((Y, \sigma)\) and therefore \(f(F) \) is \(\omega \)-closed in \((Y, \sigma)\). Hence \(f \) is \(\omega \)-closed.

iii) \(\Rightarrow \) i) : Let \(F \) be a closed set in \((X, \tau)\). By assumption \(f(F) \) is \(\omega \)-closed in \((Y, \sigma)\). But \(f(F) = (f^{-1})^{-1}(F) \) and therefore \(f^{-1} \) is \(\omega \)-continuous.

77
In the next two theorems, we obtain various characterizations of \(\omega \)-open maps.

Theorem 4.2.21 Let \(f : (X, \tau) \to (Y, \sigma) \) be a mapping. Then the following statements are equivalent:

i) \(f \) is an \(\omega \)-open mapping.

ii) For a subset \(A \) of \((X, \tau) \), \(f(\text{int}(A)) \subseteq \omega\text{-int}(f(A)) \).

iii) For each \(x \in X \) and for each neighbourhood \(U \) of \(x \) in \((X, \tau) \), there exists an \(\omega \)-neighbourhood \(W \) of \(f(x) \) in \((Y, \sigma) \) such that \(W \subseteq f(U) \).

Proof:
i) \(\Rightarrow \) ii): Suppose \(f \) is \(\omega \)-open. Let \(A \subseteq X \). Then \(\text{int}(A) \) is open in \((X, \tau) \) and so \(f(\text{int}(A)) \) is \(\omega \)-open in \((Y, \sigma) \). We have \(f(\text{int}(A)) \subseteq f(A) \). Therefore, by Proposition 2.4.17, \(f(\text{int}(A)) \subseteq \omega\text{-int}(f(A)) \).

ii) \(\Rightarrow \) iii): Suppose ii) holds. Let \(x \in X \) and \(U \) be an arbitrary neighbourhood of \(x \) in \((X, \tau) \). Then there exists an open set \(G \) such that \(x \in G \subseteq U \). By assumption, \(f(G) = f(\text{int}(G)) \subseteq \omega\text{-int}(f(G)) \). This implies \(f(G) = \omega\text{-int}(f(G)) \). By Proposition 2.4.17, we have \(f(G) \) is \(\omega \)-open in \((Y, \sigma) \). Further, \(f(x) \in f(G) \subseteq f(U) \) and so iii) holds, by taking \(W = f(G) \).

iii) \(\Rightarrow \) i): Suppose iii) holds. Let \(U \) be any open set in \((X, \tau) \), \(x \in U \) and \(f(x) = y \). Then \(y \in f(U) \) and for each \(y \in f(U) \), by assumption there exists an \(\omega \)-neighbourhood \(W_y \) of \(y \) in \((Y, \sigma) \) such that \(W_y \subseteq f(U) \). Since \(W_y \) is an \(\omega \)-neighbourhood of \(y \), there exists an \(\omega \)-open set \(V_y \) in \((Y, \sigma) \) such that \(y \in V_y \subseteq W_y \). Therefore, \(f(U) = \bigcup \{ V_y : y \in f(U) \} \) is an \(\omega \)-open set in \((Y, \sigma) \) by Proposition 2.4.4. Thus \(f \) is an \(\omega \)-open mapping.

Theorem 4.2.22 A function \(f : (X, \tau) \to (Y, \sigma) \) is \(\omega \)-open if and only if for any subset \(S \) of \((Y, \sigma) \) and for any closed set \(F \) containing \(f^{-1}(S) \), there exists an \(\omega \)-closed set \(K \) of \((Y, \sigma) \) containing \(S \) such that \(f^{-1}(K) \subseteq F \).

Proof: Similar to Theorem 4.2.7.
Corollary 4.2.23 A function \(f: (X, \tau) \to (Y, \sigma) \) is \(\omega \)-open if and only if \(f^{-1}(\omega\text{-cl}(B)) \subseteq \text{cl}(f^{-1}(B)) \) for each subset \(B \) of \((Y, \sigma) \).

Proof: Suppose that \(f \) is \(\omega \)-open. Then for any \(B \subseteq Y \), \(f^{-1}(B) \subseteq \text{cl}(f^{-1}(B)) \). By Theorem 4.2.22, there exists an \(\omega \)-closed set \(K \) of \((Y, \sigma) \) such that \(B \subseteq K \) and \(f^{-1}(K) \subseteq \text{cl}(f^{-1}(B)) \). Therefore, \(f^{-1}(\omega\text{-cl}(B)) \subseteq f^{-1}(K) \subseteq \text{cl}(f^{-1}(B)) \), since \(K \) is an \(\omega \)-closed set in \((Y, \sigma) \).

Conversely, let \(S \) be any subset of \((Y, \sigma) \) and \(F \) be any closed set containing \(f^{-1}(S) \). Put \(K = \omega\text{-cl}(S) \). Then \(K \) is an \(\omega \)-closed set and \(S \subseteq K \). By assumption, \(f^{-1}(K) = f^{-1}(\omega\text{-cl}(S)) \subseteq \text{cl}(f^{-1}(S)) \subseteq F \) and therefore by Theorem 4.2.22, \(f \) is \(\omega \)-open.

Finally in this section, we define another new class of maps called \(\omega^* \)-closed maps which are stronger than \(\omega \)-closed maps.

Definition 4.2.24 A map \(f: (X, \tau) \to (Y, \sigma) \) is said to be an \(\omega^* \)-closed map if the image \(f(A) \) is \(\omega \)-closed in \((Y, \sigma) \) for every \(\omega \)-closed set \(A \) in \((X, \tau) \).

For example the map \(f \) in Example 4.2.2 is an \(\omega^* \)-closed map.

Remark 4.2.25 Since every closed set is an \(\omega \)-closed set we have every \(\omega^* \)-closed map is an \(\omega \)-closed map. The converse is not true in general as seen from the following example.

Example 4.2.26 Let \(X = Y = \{a, b, c\} \), \(\tau = \{\phi, \{a, b\}, X\} \), \(\sigma = \{\phi, \{a\}, \{a, b\}, \{a, b\}, Y\} \) and \(f: (X, \tau) \to (Y, \sigma) \) be the identity map. Then \(f \) is an \(\omega \)-closed map but not an \(\omega^* \)-closed map, since \(\{a, c\} \) is an \(\omega \)-closed set in \((X, \tau) \), but its image under \(f \) is \(\{a, c\} \), which is not \(\omega \)-closed in \((Y, \sigma) \).

Proposition 4.2.27 A mapping \(f: (X, \tau) \to (Y, \sigma) \), is \(\omega^* \)-closed if and only if \(\omega\text{-cl}(f(A)) \subseteq f(\omega\text{-cl}(A)) \) for every subset \(A \) of \((X, \tau) \).

Proof: Similar to Proposition 4.2.3.

Analogous to \(\omega^* \)-closed map we can also define \(\omega^* \)-open map.
Proposition 4.2.28 For any bijection $f : (X, \tau) \to (Y, \sigma)$, the following are equivalent:

i) $f^{-1} : (Y, \sigma) \to (X, \tau)$ is ω-irresolute.

ii) f is an ω^*-open and

iii) f is an ω^*-closed map.

Proof: Similar to Proposition 4.2.20.

Proposition 4.2.29 If $f : (X, \tau) \to (Y, \sigma)$ is irresolute and ω-closed, then it is an ω^*-closed map.

The proof follows from Proposition 4.2.8.

4.3. ω-Homeomorphisms

In this section we introduce and study two new homeomorphisms namely ω-homeomorphism and ω^*-homeomorphism. We prove that gc-homeomorphism and ω-homeomorphism are independent and ω^*-homeomorphism is an equivalence relation between topological spaces.

Definition 4.3.1 A bijection $f : (X, \tau) \to (Y, \sigma)$ is called ω-homeomorphism if f is both ω-continuous and ω-open.

Example 4.3.2 Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then f is bijective, ω-continuous and ω-open and so f is an ω-homeomorphism.

Proposition 4.3.3 Every homeomorphism is an ω-homeomorphism but not conversely.

The proof is easy consequences of definitions.
The map \(f \) in Example 4.3.2 is an \(\omega \)-homeomorphism but not a homeomorphism because it is not continuous.

Proposition 4.3.4 Every \(\omega \)-homeomorphism is a \(g \)-homeomorphism but not conversely.

Proof: Since every \(\omega \)-continuous map is \(g \)-continuous and every \(\omega \)-open map is \(g \)-open, the proposition follows.

Example 4.3.5 Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, X\} \) and \(\sigma = \{\emptyset, \{b\}, Y\} \).

Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = c, f(b) = a \) and \(f(c) = b \). Then \(f \) is a \(g \)-homeomorphism but not an \(\omega \)-homeomorphism.

Proposition 4.3.6 Let \(f : (X, \tau) \to (Y, \sigma) \) be a bijective \(\omega \)-continuous map. Then the following are equivalent:

i) \(f \) is an \(\omega \)-open map,

ii) \(f \) is an \(\omega \)-homeomorphism,

iii) \(f \) is an \(\omega \)-closed map.

Proof: Follows from Proposition 4.2.20.

The composition of two \(\omega \)-homeomorphisms need not be an \(\omega \)-homeomorphism as seen from the following example.

Example 4.3.7 Let \(X = Y = Z = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \), \(\sigma = \{\emptyset, \{a, b\}, Y\} \) and \(\eta = \{\emptyset, \{a\}, \{a, b\}, Z\} \) respectively. Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be identity maps respectively. Then both \(f \) and \(g \) are \(\omega \)-homeomorphisms but their composition \(g \circ f : (X, \tau) \to (Z, \eta) \) is not an \(\omega \)-homeomorphism, because for the open set \(\{b\} \) in \((X, \tau) \), \((g \circ f)(\{b\}) = \{b\}\), which is not an \(\omega \)-open set in \((Z, \eta) \). Therefore \(g \circ f \) is not an \(\omega \)-open map and so \(g \circ f \) is not an \(\omega \)-homeomorphism.

We next introduce a new class of maps called \(\omega^* \)-homeomorphisms which forms a sub class of \(\omega \)-homeomorphisms. This class of maps is closed under composition of maps.

81
Definition 4.3.8 A bijection $f : (X, \tau) \to (Y, \sigma)$ is said to be ω^*-homeomorphism if both f and f^{-1} are ω-irresolute.

For Example, the map f in Example 4.3.7 and the maps h and t in Theorem 3.4.25 are ω^*-homeomorphisms.

We denote the family of all ω-homeomorphisms (resp. ω^*-homeomorphism and homeomorphisms) of a topological space (X, τ) onto itself by $\omega-h(X,\tau)$ (resp. $\omega^*-h(X,\tau)$ and $h(X,\tau)$).

Proposition 4.3.9 Every ω^*-homeomorphism is an ω-homeomorphism but not conversely. i.e., for any space (X, τ), $\omega^*-h(X,\tau) \subseteq \omega-h(X,\tau)$.

Proof: Follows from Proposition 3.3.6 and every ω^*-open map is ω-open.

The function g in Example 4.3.7 is an ω-homeomorphism but not an ω^*-homeomorphism, since for the ω-closed set $\{a, c\}$ in (Y, σ),

$$(g^{-1})^{-1}(\{a, c\}) = g(\{a, c\}) = \{a, c\}$$

which is not ω-closed in (Z, η). Therefore g^{-1} is not ω-irresolute and so g is not an ω^*-homeomorphism.

Theorem 4.3.10 [19] If $f : (X, \tau) \to (Y, \sigma)$ is continuous and open, then f is irresolute and pre-semi-open.

Proposition 4.3.11 Every homeomorphism is an ω^*-homeomorphism but not conversely.

Proof: Let $f : (X, \tau) \to (Y, \sigma)$ be a homeomorphism. Then f is bijective, continuous and open. By Theorem 4.3.10, f is pre-semi-open and irresolute. Since f is continuous, it is ω-continuous. Thus f is bijective, pre-semi-open and ω-continuous and so f is ω-irresolute by Proposition 3.3.10. Again since f is a homeomorphism it is both continuous and closed. Thus f is bijective, irresolute and closed and therefore, f^{-1} is ω-irresolute by Proposition 3.3.15. Since both f and f^{-1} are ω-irresolute, f is an ω^*-homeomorphism.

The map f in Example 4.3.7 is ω^*-homeomorphism but not a homeomorphism.
Proposition 4.3.12 Every ω^*-homeomorphism is a g-homeomorphism but not conversely.

Proof: Follows from Propositions 4.3.9 and 4.3.4.

The map f in Example 4.3.5 is a g-homeomorphism but not an ω^*-homeomorphism.

Remark 4.3.13 ω-homeomorphism and gc-homeomorphism are independent as seen from the following examples.

Example 4.3.14 Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{b\}, \{b, c\}, X\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = c$, $f(b) = b$ and $f(c) = a$. Then f is a gc-homeomorphism but not an ω-homeomorphism, because f is not an ω-continuous map.

The map f in Example 4.3.2 is an ω-homeomorphism but not a gc-homeomorphism, because f^{-1} is not a gc irresolute map.

Remark 4.3.15 We obtain the following implications from the above discussions and known results:

\[
\begin{array}{c}
\text{gc-homeomorphism} \\
\Rightarrow \\
\omega^*\text{-homeomorphism} \\
\Rightarrow \\
\omega\text{-homeomorphism} \\
\Rightarrow \\
g\text{-homeomorphism}
\end{array}
\]

Proposition 4.3.16 If $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \eta)$ are ω^*-homeomorphisms, then their composition $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is also ω^*-homeomorphism.

Proof: Let U be an ω-open set in (Z, η). Now, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)$, where $V = g^{-1}(U)$. By hypothesis, V is ω-open in (Y, σ) and so again by hypothesis, $f^{-1}(V)$ is ω-open in (X, τ). Therefore, $g \circ f$ is...
Also for an \(\omega \)-open set \(G \) in \((X, \tau)\), we have \((g \circ f)(G) = g(f(G)) = g(W)\), where \(W = f(G) \). By hypothesis \(f(G) \) is \(\omega \)-open in \((Y, \sigma)\) and so again by hypothesis, \(g(f(G)) \) is \(\omega \)-open in \((Z, \eta)\), i.e., \((g \circ f)(G) \) is \(\omega \)-open in \((Z, \eta)\) and therefore \((g \circ f)^{-1} \) is \(\omega \)-irresolute. Hence \(g \circ f \) is an \(\omega \)-homeomorphism.

Theorem 4.3.17 The set \(\omega \)-h\((X, \tau)\) is a group under the composition of maps.

Proof: Define a binary operation \(\cdot : \omega \)-h\((X, \tau) \times \omega \)-h\((X, \tau) \to \omega \)-h\((X, \tau)\) by \(f \cdot g = g \circ f \) for all \(f, g \in \omega \)-h\((X, \tau)\) and \(\cdot \) is the usual operation of composition of maps. Then by Proposition 4.3.16, \(g \circ f \in \omega \)-h\((X, \tau)\). We know that the composition of maps is associative and the identity map \(I : (X, \tau) \to (X, \tau) \) belonging to \(\omega \)-h\((X, \tau)\) serves as the identity element. If \(f \in \omega \)-h\((X, \tau)\), then \(f^{-1} \in \omega \)-h\((X, \tau)\) such that \(f \circ f^{-1} = f^{-1} \circ f = I \) and so inverse exists for each element of \(\omega \)-h\((X, \tau)\). Therefore, \((\omega \)-h\((X, \tau)\), \(\cdot \)\) is a group under the operation of composition of maps.

Theorem 4.3.18 Let \(f : (X, \tau) \to (Y, \sigma) \) be an \(\omega \)-homeomorphism. Then \(f \) induces an isomorphism from the group \(\omega \)-h\((X, \tau)\) onto the group \(\omega \)-h\((Y, \sigma)\).

Proof: Using the map \(f \), we define a map \(\psi_f : \omega \)-h\((X, \tau) \to \omega \)-(Y,\(\sigma)\) by \(\psi_f(h) = f \circ h \circ f^{-1} \) for every \(h \in \omega \)-h\((X, \tau)\). Then \(\psi_f \) is a bijection. Further, for all \(h_1, h_2 \in \omega \)-h\((X, \tau)\), \(\psi_f(h_1 \circ h_2) = f \circ (h_1 \circ h_2) \circ f^{-1} = (f \circ h_1 \circ f^{-1}) \circ (f \circ h_2 \circ f^{-1}) = \psi_f(h_1) \circ \psi_f(h_2) \). Therefore, \(\psi_f \) is a homomorphism and so it is an isomorphism induced by \(f \).

Theorem 4.3.19 \(\omega \)-homeomorphism is an equivalence relation in the collection of all topological spaces.

Proof: Reflexivity and symmetry are immediate and transitivity follows from Proposition 4.3.16.
Theorem 4.3.20 If \(f : (X, \tau) \to (Y, \sigma) \) is an \(\omega \)-homeomorphism, then
\[
\omega \text{-cl}(f^{-1}(B)) = f^{-1}(\omega \text{-cl}(B))
\]
for all \(B \subseteq Y \).

Proof: Since \(f \) is an \(\omega \)-homeomorphism, \(f \) is \(\omega \)-irresolute. Since \(\omega \text{-cl}(f(B)) \) is an \(\omega \)-closed set in \((Y, \sigma)\), \(f^{-1}(\omega \text{-cl}(f(B))) \) is \(\omega \)-closed in \((X, \tau)\). Now,
\[
f^{-1}(B) \subseteq f^{-1}(\omega \text{-cl}(B))
\]
and so by Proposition 2.3.9, \(\omega \text{-cl}(f^{-1}(B)) \subseteq f^{-1}(\omega \text{-cl}(B)) \).

Again since \(f \) is an \(\omega \)-homeomorphism, \(f^{-1} \) is \(\omega \)-irresolute. Since
\[
\omega \text{-cl}(f^{-1}(B)) \text{ is } \omega \text{-closed in } (X, \tau),
\]
\[
(f^{-1})^{-1}(\omega \text{-cl}(f^{-1}(B))) = f(\omega \text{-cl}(f^{-1}(B)))
\]
is \(\omega \)-closed in \((Y, \sigma)\). Now, \(B \subseteq (f^{-1})^{-1}(f^{-1}(B)) \subseteq (f^{-1})^{-1}(\omega \text{-cl}(f^{-1}(B))) = f(\omega \text{-cl}(f^{-1}(B))) \) and so \(\omega \text{-cl}(B) \subseteq f(\omega \text{-cl}(f^{-1}(B))) \). Therefore,
\[
f^{-1}(\omega \text{-cl}(B)) \subseteq f^{-1}(f(\omega \text{-cl}(f^{-1}(B)))) \subseteq \omega \text{-cl}(f^{-1}(B))
\]
and hence the equality holds.

Corollary 4.3.21 If \(f : (X, \tau) \to (Y, \sigma) \) is an \(\omega \)-homeomorphism, then
\[
\omega \text{-cl}(f(B)) = f(\omega \text{-cl}(B))
\]
for all \(B \subseteq X \).

Proof: Since \(f : (X, \tau) \to (Y, \sigma) \) is an \(\omega \)-homeomorphism, \(f^{-1} : (Y, \sigma) \to (X, \tau) \) is also an \(\omega \)-homeomorphism. Therefore by Theorem 4.3.20,
\[
\omega \text{-cl}(f^{-1}(B)) = (f^{-1})^{-1}(\omega \text{-cl}(B))
\]
for all \(B \subseteq X \). i.e., \(\omega \text{-cl}(f(B)) = f(\omega \text{-cl}(B)) \).

Corollary 4.3.22 If \(f : (X, \tau) \to (Y, \sigma) \) is an \(\omega \)-homeomorphism, then
\[
f(\omega \text{-int}(B)) = \omega \text{-int}(f(B))
\]
for all \(B \subseteq X \).

Proof: By Proposition 2.4.18, for any set \(B \subseteq X \), \(\omega \text{-int}(B) = (\omega \text{-cl}(B^c))^c \).

Thus
\[
f(\omega \text{-int}(B)) = f((\omega \text{-cl}(B^c))^c)
\]
\[
= (f(\omega \text{-cl}(B^c)))^c
\]
\[
= (\omega \text{-cl}(f(B^c)))^c, \text{ by Corollary 4.3.21.}
\]
\[
= (\omega \text{-cl}((f(B))^c))^c = \omega \text{-int}(f(B)) \text{ by Proposition 2.4.18.}
\]

Corollary 4.3.23 If \(f : (X, \tau) \to (Y, \sigma) \) is an \(\omega \)-homeomorphism, then
\[
f^{-1}(\omega \text{-int}(B)) = \omega \text{-int}(f^{-1}(B))
\]
for all \(B \subseteq Y \).

Proof: Since \(f^{-1} : (Y, \sigma) \to (X, \tau) \) is also an \(\omega \)-homeomorphism, the proof follows from Corollary 4.3.22.
4.4. ω-Compactness and ω-connectedness

Di Maio and Noiri [26] used semi-open covers to introduce a new class of compact spaces called s-closed spaces. Sundaram [112] introduced the concepts of GO-compact spaces and GO-connected spaces by using g-open sets in topological spaces. Recently, Devi [21] introduced the notions of GαO-compactness, GαO-connectedness, αGO-compactness and αGO-connectedness using gα-open and αg-open sets. In this section, we introduce ω-compactness and ω-connectedness using ω-open sets and study some of their properties.

Definition 4.4.1 A collection \(\{A_i : i \in \Lambda\} \) of ω-open sets in a topological space \((X, \tau)\) is called an ω-open cover of a subset \(A\) in \((X, \tau)\) if \(A \subseteq \bigcup_{i \in \Lambda} A_i\).

Definition 4.4.2 A topological space \((X, \tau)\) is called ω-compact if every ω-open cover of \((X, \tau)\) has a finite ω-subcover.

Definition 4.4.3 A subset \(A\) of a topological space \((X, \tau)\) is called ω-compact relative to \((X, \tau)\), if for every collection \(\{A_i : i \in \Lambda\}\) of ω-open subsets of \((X, \tau)\) such that \(A \subseteq \bigcup_{i \in \Lambda} A_i\), there exists a finite subset \(\Lambda_0\) of \(\Lambda\) such that \(A \subseteq \bigcup_{i \in \Lambda_0} A_i\).

Definition 4.4.4 A subset \(A\) of a topological space \((X, \tau)\) is called ω-compact if \(A\) is ω-compact as a subspace of \((X, \tau)\).

Proposition 4.4.5 An ω-closed subset of an ω-compact space is ω-compact relative to \((X, \tau)\).

Proof: Let \(A\) be an ω-closed subset of an ω-compact space \((X, \tau)\). Then \(A^c\) is ω-open in \((X, \tau)\). Let \(C\) be an ω-open cover of \(A\) in \((X, \tau)\). Therefore \(C\) along with \(A^c\) form an ω-open cover of \((X, \tau)\). Since \((X, \tau)\) is ω-compact, it has a finite sub cover, say \(\{V_1, V_2, \ldots, V_n\}\). If this subcover contains \(A^c\),
we discard it. Otherwise leave the subcover as it is. Thus we have obtained a finite subcover of A and so A is ω-compact relative to (X, τ).

Proposition 4.4.6 A ω-closed subset of GO-compact space is GO-compact relative to (X, τ).

Proof: By Proposition 2.2.4, every ω-closed set is g-closed and since a g-closed subset of a GO-compact space is GO-compact relative to (X, τ) ([112], Theorem 5.5) the result follows.

Proposition 4.4.7 An ω-continuous image of an ω-compact space is compact.

Proof: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be an ω-continuous onto map, where (X, τ) is an ω-compact space. Let $\{A_i : i \in \Lambda\}$ be an open cover of (Y, σ). Then $\{f^{-1}(A_i) : i \in \Lambda\}$ is an ω-open cover of (X, τ). Since (X, τ) is ω-compact, it has a finite subcover, say $\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\}$. Since f is onto, $\{A_1, A_2, \ldots, A_n\}$ is an open cover of (Y, σ) and so (Y, σ) is compact.

Proposition 4.4.8 If a map $f : (X, \tau) \rightarrow (Y, \sigma)$ is ω-irresolute and a subset B is ω-compact relative to (X, τ), then the image $f(B)$ is ω-compact relative to (Y, σ).

Proof: Let $\{A_i : i \in \Lambda\}$ be any collection of ω-open sets of (Y, σ) such that $f(B) \subseteq \bigcup_{i \in \Lambda} A_i$. Then $B \subseteq \bigcup_{i \in \Lambda} f^{-1}(A_i)$. By hypothesis, there exists a finite subset Λ_0 of Λ such that $B \subseteq \bigcup_{i \in \Lambda_0} f^{-1}(A_i)$. Therefore $f(B) \subseteq \bigcup_{i \in \Lambda_0} A_i$ and so $f(B)$ is ω-compact relative to (Y, σ).

Proposition 4.4.9 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a strongly ω-continuous onto map where (X, τ) is a compact space, then (Y, σ) is ω-compact.

Proof: Let $\{A_i : i \in \Lambda\}$ be an ω-open cover of (Y, σ). Then $\{f^{-1}(A_i) : i \in \Lambda\}$ is an open cover of (X, τ), since f is strongly ω-continuous. Since (X, τ) is compact, it has a finite subcover say, $\{f^{-1}(A_1), f^{-1}(A_2), \ldots\}$.
We introduce \(\omega \)-connected spaces in topological spaces and study some of their properties.

Definition 4.4.13 A topological space \((X, \tau)\) is called an \(\omega \)-connected space if \((X, \tau)\) cannot be written as a disjoint union of two non-empty \(\omega \)-open sets.

A subset of \((X, \tau)\) is \(\omega \)-connected if it is \(\omega \)-connected as subspace of \((X, \tau)\).

Theorem 4.4.14 For a topological space \((X, \tau)\), the following are equivalent:

i) \((X, \tau)\) is \(\omega \)-connected.

ii) The only subsets of \((X, \tau)\) which are both \(\omega \)-open and \(\omega \)-closed are the empty set \(\emptyset \) and \(X \).
iii) Each ω-continuous map of \((X, \tau)\) into a discrete space \((Y, \sigma)\) with at least two points is a constant map.

Proof: i) ⇒ ii) : Let \(U\) be an ω-open and ω-closed subset of \((X, \tau)\). Then \(U^c\) is both ω-open and ω-closed in \((X, \tau)\). Since \((X, \tau)\) is the disjoint union of the ω-open sets \(U\) and \(U^c\), by assumption one of these must be empty, i.e., \(U = \emptyset\) or \(U = X\).

ii) ⇒ i) : Suppose that \(X = A \cup B\) where \(A\) and \(B\) are disjoint non-empty ω-open subsets of \((X, \tau)\). Then \(A\) is both ω-open and ω-closed subset of \((X, \tau)\) and therefore by assumption, \(A = \emptyset\) or \(X\). Thus \((X, \tau)\) is ω-connected.

ii) ⇒ iii) : Let \(f : (X, \tau) \rightarrow (Y, \sigma)\) be an ω-continuous map. Then \((X, \tau)\) is covered by ω-open and ω-closed covering \(\{f^{-1}(y) : y \in Y\}\). By assumption \(f^{-1}(y) = \emptyset\) or \(X\) for each \(y \in Y\). If \(f^{-1}(y) = \emptyset\) for each \(y \in Y\), then \(f\) fails to be a map. Therefore there exists at least one point say, \(y_1 \in Y\) such that \(f^{-1}(y_1) \neq \emptyset\) and hence \(f^{-1}(y_1) = X\), which shows that \(f\) is a constant map.

iii) ⇒ ii) : Let \(U\) be both ω-open and ω-closed in \((X, \tau)\). Suppose that \(U \neq \emptyset\). Define \(f : (X, \tau) \rightarrow (Y, \sigma)\) by \(f(U) = \{y_1\}\) and \(f(U^c) = \{y_2\}\) for some distinct points \(y_1\) and \(y_2\) in \((Y, \sigma)\), then \(f\) is an ω-continuous map. Therefore, by assumption \(f\) is a constant map. Therefore \(y_1 = y_2\) and so \(U = X\).

Proposition 4.4.15 Every ω-connected space is connected but not conversely.

Proof: Let \((X, \tau)\) be an ω-connected space. Suppose that \((X, \tau)\) is not connected. Then \(X = A \cup B\) where \(A\) and \(B\) are disjoint nonempty open sets in \((X, \tau)\). By Proposition 2.4.2, \(A\) and \(B\) are ω-open and \(X = A \cup B\), where \(A\) and \(B\) are disjoint nonempty and ω-open sets in \((X, \tau)\). This contradicts the fact that \((X, \tau)\) is ω-connected and so \((X, \tau)\) is connected.

Example 4.4.16 Let \(X = \{a, b, c\}\) and \(\tau = \{\emptyset, X\}\). Then \((X, \tau)\) is a connected space but not an ω-connected space, because \(X = \{a\} \cup \{b, c\}\),
where \{a\} and \{b, c\} are \(\omega\)-open sets in \((X, \tau)\).

Proposition 4.4.17 If \((X, \tau)\) is a \(T_\omega\)-space and connected, then \((X, \tau)\) is
\(\omega\)-connected.

The proof is easy consequences of definitions.

Proposition 4.4.18 If \(f: (X, \tau) \rightarrow (Y, \sigma)\) is an \(\omega\)-continuous surjection and
\((X, \tau)\) is \(\omega\)-connected, then \((Y, \sigma)\) is connected.

Proof: Suppose that \(Y = A \cup B\), where \(A\) and \(B\) are disjoint nonempty
open sets of \((Y, \sigma)\). Since \(f\) is \(\omega\)-continuous and onto,
\(X = f^{-1}(A) \cup f^{-1}(B)\) where, \(f^{-1}(A)\) and \(f^{-1}(B)\) are disjoint nonempty \(\omega\)-open sets in \((X, \tau)\). This
contradicts the fact that \((X, \tau)\) is \(\omega\)-connected and so \((Y, \sigma)\) is connected.

Proposition 4.4.19 If \(f: (X, \tau) \rightarrow (Y, \sigma)\) is an \(\omega\)-irresolute surjection and
\((X, \tau)\) is \(\omega\)-connected, then \((Y, \sigma)\) is \(\omega\)-connected.

Proof: Similar to Proposition 4.4.18.

Proposition 4.4.20 If \(f: (X, \tau) \rightarrow (Y, \sigma)\) is strongly \(\omega\)-continuous onto
map, where \((X, \tau)\) is a connected space, then \((Y, \sigma)\) is \(\omega\)-connected.

Proof: Similar to Proposition 4.4.18.

Proposition 4.4.21 If \((X, \tau)\) is a topological space with atleast two points
and if \(SO(X, \tau) \equiv \{F \subseteq X : F^c \in \tau\}\), then \((X, \tau)\) is not \(\omega\)-connected.

Proof: By Theorem 2.2.41, there exists a proper subset of \((X, \tau)\) which is
both \(\omega\)-open and \(\omega\)-closed. Therefore by Theorem 4.4.14, \((X, \tau)\) is not
\(\omega\)-connected.

Proposition 4.4.22 If \(f: (X, \tau) \rightarrow (Y, \sigma)\) is an \(\omega\)-continuous map, then \(f(H)\)
is a connected subset of \((Y, \sigma)\) for every \(\omega\)-closed and \(\omega\)-connected subset \(H\)
of \((X, \tau)\).

Proof: The restriction \(f_H\) of \(f\) to \(H\) is \(\omega\)-continuous by Proposition 3.2.22.

By Proposition 4.4.18, the image of the \(\omega\)-connected space \((H, \tau_H)\) under
\(f_H: (H, \tau_H) \rightarrow (f(H), \sigma_{f(H)})\) is connected. Therefore \((f(H), \sigma_{f(H)})\) is connected.
Thus $f(H)$ is a connected subset of (Y, σ).

4.5. ω-regular and ω-normal spaces

Munshi [78] introduced g-regular and g-normal spaces using g-closed sets in topological spaces. Noiri and Popa [92] have further investigated the results of Munshi. In this section we introduce ω-regular spaces and ω-normal spaces in topological spaces. We obtain several characterizations of ω-regular and ω-normal spaces.

Definition 4.5.1 A space (X, τ) is said to be ω-regular if for every ω-closed set F and a point $x \in F$, there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.

Remark 4.5.2 It is obvious that every ω-regular space is regular but not conversely. Consider the topological space (X, τ) of Example 4.2.6. Then (X, τ) is a regular space but not an ω-regular space.

Proposition 4.5.3 Let (X, τ) be a topological space. Then the following are equivalent:

i) (X, τ) is an ω-regular space.

ii) For each $x \in X$ and each ω-open neighbourhood W of x there exists an open neighbourhood V of x such that $\text{cl}(V) \subseteq W$.

Proof: i) \Rightarrow ii): Let W be any ω-open neighbourhood of x. Then there exists an ω-open set G such that $x \in G \subseteq W$. Since G^c is ω-closed and $x \notin G^c$, by hypothesis there exists open sets U and V such that $G^c \subseteq U$, $x \in V$ and $U \cap V = \emptyset$ and so $V \subseteq U^c$. Now, $\text{cl}(V) \subseteq \text{cl}(U^c) = U^c$ and $G^c \subseteq U$ implies $U^c \subseteq G \subseteq W$. Therefore $\text{cl}(V) \subseteq W$.
ii) \Rightarrow i): Let F be any ω-closed set and $x \notin F$. Then $x \in F^c$ and F^c is ω-open and so F^c is an ω-neighbourhood of x. By hypothesis, there exists an open neighbourhood V of x such that $x \in V$ and $\text{cl}(V) \subseteq F^c$, which implies $F \subseteq (\text{cl}(V))^c$. Then $(\text{cl}(V))^c$ is an open set containing F and $V \cap (\text{cl}(V))^c = \emptyset$. Therefore X is ω-regular.

Proposition 4.5.4 For a space (X, τ) the following are equivalent:

i) (X, τ) is normal.

ii) For every pair of disjoint closed sets A and B, there exists ω-open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Proof: i) \Rightarrow ii): Let F and K be disjoint closed subsets of (X, τ). By hypothesis, there exists disjoint open sets (and hence ω-open sets) U and V such that $A \subseteq U$ and $B \subseteq V$.

ii) \Rightarrow i): Let A and B be closed subsets of (X, τ). Then by assumption, $A \subseteq G$, $B \subseteq H$ and $G \cap H = \emptyset$ where G and H are disjoint ω-open sets. Since A and B are semi closed, by Theorem 2.4.6, $A \subseteq \text{int}(G)$ and $B \subseteq \text{int}(H)$. Further, $\text{int}(G) \cap \text{int}(H) = \text{int}(G \cap H) = \emptyset$.

Proposition 4.5.5 If (X, τ) is semi-normal, then the following statements are true:

i) For each semi-closed set A and every ω-open set B such that $A \subseteq B$, there exists a semi-open set U such that $A \subseteq U \subseteq \text{scl}(U) \subseteq B$.

ii) For every ω-closed set A and every semi-open set B containing A, there exists a semi-open set U such that $A \subseteq U \subseteq \text{scl}(U) \subseteq B$.

iii) For every pair consisting of disjoint sets A and B one of which is semi-closed and the other is ω-closed there exists semi-open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $\text{scl}(U) \cap \text{scl}(V) = \emptyset$.

Proof: i). A be a semi-closed set and B be an ω-open set such that $A \subseteq B$. Then $A \cap B^c = \emptyset$, where A is semi-closed and B^c is ω-closed. Therefore,
by Proposition 2.2.46, there exists semi-open sets U and V such that $A \subseteq U$, $B^c \subseteq V$ and $U \cap V = \emptyset$. Thus $A \subseteq U \subseteq V^c \subseteq B$. Since V^c is semi-closed, $scl(U) \subseteq V^c$ and so $A \subseteq U \subseteq scl(U) \subseteq B$.

ii). Let A be an ω-closed set and B be a semi-open set such that $A \subseteq B$. Then $B^c \subseteq A^c$. Since (X, τ) is semi-normal and A^c is an ω-open set containing the semi-closed set B^c, we have by i), there exists a semi-open set G such that $B^c \subseteq G \subseteq scl(G) \subseteq A^c$. Thus $A \subseteq (scl(G))^c \subseteq G^c \subseteq B$. Let $U = (scl(G))^c$. Then U is semi-open and $A \subseteq U \subseteq scl(U) \subseteq B$.

iii). Let A be an ω-closed set and B be a semi-closed set such that $A \cap B = \emptyset$. Then $A \subseteq B^c$ and B^c is semi-open. Since (X, τ) is semi-normal, we have by ii), there exists a semi-open set S such that $A \subseteq S \subseteq scl(S) \subseteq B^c$. Since A is ω-closed and S is semi-open, we have again by ii), there is a semi-open set U such that $A \subseteq U \subseteq scl(U) \subseteq S$. Thus $A \subseteq U \subseteq scl(U) \subseteq S \subseteq scl(S) \subseteq B^c$. Let $V = (scl(S))^c$. Thus V is semi-open, $B \subseteq V$ and $scl(U) \cap scl(V) = \emptyset$.

Theorem 4.5.6[78] A space (X, τ) is symmetric if and only if $\{x\}$ is g-closed in (X, τ) for each point x of (X, τ).

Theorem 4.5.7 A gT_ω space (X, τ) is symmetric if and only if $\{x\}$ is ω-closed in (X, τ) for each point x of (X, τ).

Proof: Follows from Theorem 4.5.6.

Proposition 4.5.8 Every semi-normal, symmetric and gT_ω space (X, τ) is s-regular.

Proof: Let F be a closed subset of (X, τ) and $x \in X$ such that $x \notin F$. Since (X, τ) is symmetric and gT_ω, by Theorem 4.5.7, $\{x\}$ is ω-closed. Since F is closed, it is semi-closed and since (X, τ) is semi-normal, we have by Proposition 2.2.46, there exists disjoint semi-open sets U_1 and U_2 such that $F \subseteq U_1$ and $\{x\} \subseteq U_2$. Therefore (X, τ) is s-regular.
Proposition 4.5.9 If (X, τ) is an ω-regular space and Y is an open and ω-closed subset of (X, τ), then the subspace Y is ω-regular.

Proof: Let F be any ω-closed subset of Y and $y \in F^c$. By Proposition 2.2.35, F is ω-closed in (X, τ). Since (X, τ) is ω-regular there exist disjoint open sets U and V of (X, τ) such that $y \in U$ and $F \subseteq V$. Therefore $U \cap Y$ and $V \cap Y$ are disjoint open sets of the subspace Y such that $y \in U \cap Y$ and $F \subseteq V \cap Y$. Hence the subspace Y is ω-regular.

Theorem 4.5.10 A topological space (X, τ) is ω-regular if and only if for each ω-closed set F of (X, τ) and each $x \in F^c$ there exist open sets U and V of (X, τ) such that $x \in U$, $F \subseteq V$ and $\text{cl}(U) \cap \text{cl}(V) = \emptyset$.

Proof: Let F be an ω-closed set of (X, τ) and $x \not\in F$. Then there exist open sets U_0 and V of (X, τ) such that $x \in U_0$, $F \subseteq V$ and $U_0 \cap V = \emptyset$, which implies $U_0 \cap \text{cl}(V) = \emptyset$. Since $\text{cl}(V)$ is closed, it is ω-closed and $x \not\in \text{cl}(V)$. Since (X, τ) is ω-regular, there exist open sets G and H of (X, τ) such that $x \in G$, $\text{cl}(V) \subseteq H$ and $G \cap H = \emptyset$, which implies $\text{cl}(G) \cap H = \emptyset$. Let $U = U_0 \cap G$, then U and V are open sets of (X, τ) such that $x \in U$, $F \subseteq V$ and $\text{cl}(U) \cap \text{cl}(V) = \emptyset$.

Converse part is trivial.

Corollary 4.5.11 If a space (X, τ) is ω-regular, symmetric and \mathcal{T}_0, then it is Urysohn.

Proof: Let x and y be any two distinct points of (X, τ). Since (X, τ) is symmetric and \mathcal{T}_0, $\{x\}$ is ω-closed by Theorem 4.5.7. Therefore, by Theorem 4.5.10, there exist open sets U and V such that $x \in U$, $y \in V$ and $\text{cl}(U) \cap \text{cl}(V) = \emptyset$.

Corollary 4.5.12 If a space (X, τ) is \mathcal{T}_0, ω-regular and symmetric then it is Hausdorff.

Proof: Similar to Corollary 4.5.11.
Theorem 4.5.13 Let \((X, \tau)\) be a topological space. Then the following statements are equivalent:

i) \((X, \tau)\) is \(\omega\)-regular.

ii) For each point \(x \in X\) and for each \(\omega\)-open neighbourhood \(W\) of \(x\), there exists an open neighbourhood \(U\) of \(x\) such that \(\text{cl}(U) \subseteq W\).

iii) For each point \(x \in X\) and for each \(\omega\)-closed set \(F\) not containing \(x\), there exists an open neighbourhood \(V\) of \(x\) such that \(\text{cl}(V) \cap F = \emptyset\).

Proof: By Proposition 4.5.3, i) \(\Leftrightarrow\) ii).

ii) \(\Rightarrow\) iii): Let \(x \in X\) and \(F\) be an \(\omega\)-closed set such that \(x \notin F\). Then \(F^c\) is an \(\omega\)-open neighbourhood of \(x\) and by hypothesis, there exists an open neighbourhood \(V\) of \(x\) such that \(\text{cl}(V) \subseteq F^c\) and hence \(\text{cl}(V) \cap F = \emptyset\).

iii) \(\Rightarrow\) ii): Let \(x \in X\) and \(W\) be an \(\omega\)-open neighbourhood of \(x\). Then there exists an \(\omega\)-open set \(G\) such that \(x \in G \subseteq W\). Since \(G^c\) is \(\omega\)-closed and \(x \notin G^c\), by hypothesis there exists an open neighbourhood \(U\) of \(x\) such that \(\text{cl}(U) \cap G^c = \emptyset\). Therefore \(\text{cl}(U) \subseteq G \subseteq W\).

Theorem 4.5.14 The following are equivalent for a space \((X, \tau)\).

i) \((X, \tau)\) is \(\omega\)-regular,

ii) \(\text{cl}_\omega(A) = \omega\text{-cl}(A)\) for each subset \(A\) of \((X, \tau)\),

iii) \(\text{cl}_\omega(A) = A\) for each \(\omega\)-closed set \(A\).

Proof: i) \(\Rightarrow\) ii): For any subset \(A\) of \((X, \tau)\), we have always \(A \subseteq \omega\text{-cl}(A) \subseteq \text{cl}_\omega(A)\). Let \(x \in (\omega\text{-cl}(A))^c\). Then there exists an \(\omega\)-closed set \(F\) such that \(x \in F^c\) and \(A \subseteq F\). By assumption, there exists disjoint open sets \(U\) and \(V\) such that \(x \in U\) and \(F \subseteq V\). Now, \(x \in U \subseteq \text{cl}(U) \subseteq V^c \subseteq F^c \subseteq A^c\) and therefore \(\text{cl}(U) \cap A = \emptyset\). Thus \(x \in (\text{cl}_\omega(A))^c\) and hence \(\text{cl}_\omega(A) = \omega\text{-cl}(A)\).

ii) \(\Rightarrow\) iii): is trivial.

iii) \(\Rightarrow\) i): Let \(F\) be any \(\omega\)-closed set and \(x \in F^c\). Since \(F\) is \(\omega\)-closed, by
assumption $x \in (\text{cl}_\theta(F))^c$ and so there exists an open set U such that $x \in U$ and $\text{cl}(U) \cap F = \emptyset$. Then $F \subseteq (\text{cl}(U))^c$. Let $V = (\text{cl}(U))^c$. Then V is an open such that $F \subseteq V$. Also the sets U and V are disjoint and hence (X, τ) is ω-regular.

Proposition 4.5.15 If (X, τ) is an ω-regular space and $f : (X, \tau) \to (Y, \sigma)$ is bijective, pre-semi-open, ω-continuous and open then (Y, σ) is ω-regular.

Proof: Let F be any ω-closed subset of (Y, σ) and $y \notin F$. Since the map f is ω-irresolute by Proposition 3.3.10, we have $f^{-1}(F)$ is ω-closed in (X, τ). Since f is bijective, let $f(x) = y$, then $x \notin f^{-1}(F)$. By hypothesis, there exists disjoint open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq V$. Since f is open and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = \emptyset$. This shows that the space (Y, σ) is also ω-regular.

Proposition 4.5.16 If $f : (X, \tau) \to (Y, \sigma)$ is irresolute ω-closed continuous injection and (Y, σ) is ω-regular, then (X, τ) is ω-regular.

Proof: Let F be any ω-closed set of (X, τ) and $x \notin F$. Since f is irresolute ω-closed, by Proposition 4.2.8, $f(F)$ is ω-closed in (Y, σ) and $f(x) \notin f(F)$. Since (Y, σ) is ω-regular and so there exist disjoint open sets U and V in (Y, σ) such that $f(x) \in U$ and $f(F) \subseteq V$. i.e., $x \in f^{-1}(U)$, $F \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Therefore (X, τ) is ω-regular.

Proposition 4.5.17 If $f : (X, \tau) \to (Y, \sigma)$ is weakly continuous ω-closed injection and (Y, σ) is ω-regular, then (X, τ) is regular.

Proof: Let F be any closed set of (X, τ) and $x \notin F$. Since f is ω-closed, $f(F)$ is ω-closed in (Y, σ) and $f(x) \notin f(F)$. Since (Y, σ) is ω-regular by Theorem 4.5.10, there exists open sets U and V such that $f(x) \in U$, $f(F) \subseteq V$ and $\text{cl}(U) \cap \text{cl}(V) = \emptyset$. Since f is weakly continuous it follows that [57, Theorem 1], $x \in f^{-1}(U) \subseteq \text{int}(f^{-1}(\text{cl}(U)))$, $F \subseteq f^{-1}(V) \subseteq \text{int}(f^{-1}(\text{cl}(V)))$ and $\text{int}(f^{-1}(\text{cl}(U))) \cap \text{int}(f^{-1}(\text{cl}(V))) = \emptyset$. Therefore (X, τ) is regular.
We conclude this section with the introduction of \(\omega \)-normal spaces in topological spaces.

Definition 4.5.18 A topological space \((X, \tau)\) is said to be \(\omega \)-normal if for any pair of disjoint \(\omega \)-closed sets \(A \) and \(B \), there exist disjoint open sets \(U \) and \(V \) such that \(A \subseteq U \) and \(B \subseteq V \).

Clearly every \(\omega \)-normal space is normal but not conversely. The space \((X, \tau)\) of Example 4.2.6 is normal but not \(\omega \)-normal.

Proposition 4.5.19 If \((X, \tau)\) is an \(\omega \)-normal space and \(Y \) is an open and \(\omega \)-closed subset of \((X, \tau)\), then the subspace \(Y \) is \(\omega \)-normal.

Proof: Let \(A \) and \(B \) be any disjoint \(\omega \)-closed sets of \(Y \). By Proposition 2.2.35, \(A \) and \(B \) are \(\omega \)-closed in \((X, \tau)\). Since \((X, \tau)\) is \(\omega \)-normal, there exist disjoint open sets \(U \) and \(V \) of \((X, \tau)\) such that \(A \subseteq U \) and \(B \subseteq V \). Then \(A \subseteq U \cap Y \) and \(B \subseteq V \cap Y \) and so the subspace \(Y \) is normal.

In the next theorem we characterize \(\omega \)-normal space.

Theorem 4.5.20 Let \((X, \tau)\) be a topological space. Then the following statements are equivalent:

i) \((X, \tau)\) is \(\omega \)-normal.

ii) For each \(\omega \)-closed set \(F \) and for each \(\omega \)-open set \(U \) containing \(F \), there exist an open set \(V \) containing \(F \) such that \(\text{cl}(V) \subseteq U \).

iii) For each pair of disjoint \(\omega \)-closed sets \(A \) and \(B \) in \((X, \tau)\), there exists an open set \(U \) containing \(A \) such that \(\text{cl}(U) \cap B = \emptyset \).

iv) For each pair of disjoint \(\omega \)-closed sets \(A \) and \(B \) in \((X, \tau)\), there exists open sets \(U \) containing \(A \) and \(V \) containing \(B \) such that \(\text{cl}(U) \cap \text{cl}(V) = \emptyset \).

Proof: i) \(\Rightarrow \) ii): Let \(F \) be an \(\omega \)-closed set and \(U \) be an \(\omega \)-open set such that \(F \subseteq U \). Then \(F \cap U^c = \emptyset \). By assumption, there exist open sets \(V \) and \(W \)...
such that $F \subseteq V$, $U^c \subseteq W$ and $V \cap W = \phi$, which implies $\text{cl}(V) \cap W = \phi$. Now, $\text{cl}(V) \cap U^c \subseteq \text{cl}(V) \cap W = \phi$ and so $\text{cl}(V) \subseteq U$.

ii) \Rightarrow iii): Let A and B be disjoint ω-closed sets of (X, τ). Since $A \cap B = \phi$, $A \subseteq B^c$ and B^c is ω-open. By assumption, there exists an open set U containing A such that $\text{cl}(U) \subseteq B^c$ and so $\text{cl}(U) \cap B = \phi$.

iii) \Rightarrow iv): Let A and B be any two disjoint ω-closed sets of (X, τ). Then by assumption, there exists an open set U containing A such that $\text{cl}(U) \cap B = \phi$. Since $\text{cl}(U)$ is closed, it is ω-closed and so B and $\text{cl}(U)$ are disjoint ω-closed sets in (X, τ). Therefore again by assumption, there exists an open set V containing B such that $\text{cl}(V) \cap \text{cl}(U) = \phi$.

iv) \Rightarrow i): Let A and B be any two disjoint ω-closed sets of (X, τ). By assumption, there exist open sets U containing A and V containing B such that $\text{cl}(U) \cap \text{cl}(V) = \phi$, we have $U \cap V = \phi$ and thus (X, τ) is ω-normal.

Proposition 4.5.21 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is bijective, pre-semi-open, ω-continuous and open and (X, τ) is ω-normal, then (Y, σ) is ω-normal.

Proof: Let A and B be any disjoint ω-closed sets of (Y, σ). The map f is ω-irresolute by Proposition 3.3.10 and so $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint ω-closed sets of (X, τ). Since (X, τ) is ω-normal, there exists disjoint open sets U and V such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is open and bijective, we have $f(U)$ and $f(V)$ are open in (Y, σ) such that $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = \phi$. Therefore (Y, σ) is ω-normal.

Proposition 4.5.22 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is irresolute ω-closed continuous injection and (Y, σ) is ω-normal, then (X, τ) is ω-normal.

Proof: Let A and B be any disjoint ω-closed subsets of (X, τ). Since f is irresolute ω-closed, $f(A)$ and $f(B)$ are disjoint ω-closed sets of (Y, σ) by Proposition 4.2.8. Since (Y, σ) is ω-normal, there exist disjoint open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$. i.e., $A \subseteq f^{-1}(U)$, $B \subseteq f^{-1}(V)$ and
f^{-1}(U) \cap f^{-1}(V) = \emptyset. Since f is continuous f^{-1}(U) and f^{-1}(V) are open in (X, \tau), we have (X, \tau) is \omega-normal.

Proposition 4.5.23 If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is weakly continuous \(\omega \)-closed injection and \((Y, \sigma)\) is \(\omega \)-normal, then \((X, \tau)\) is normal.

Proof: Let \(A \) and \(B \) be any two disjoint closed sets of \((X, \tau)\). Since \(f \) is injective and \(\omega \)-closed, \(f(A) \) and \(f(B) \) are disjoint \(\omega \)-closed sets of \((Y, \sigma)\). Since \((Y, \sigma)\) is \(\omega \)-normal, by Theorem 4.5.20, there exist open sets \(U \) and \(V \) such that \(f(A) \subseteq U \), \(f(B) \subseteq V \) and \(cl(U) \cap cl(V) = \emptyset \). Since \(f \) is weakly continuous, it follows that \([57,\text{Theorem 1}]\), \(A \subseteq f^{-1}(U) \subseteq int(f^{-1}(cl(U))) \), \(B \subseteq f^{-1}(V) \subseteq int(f^{-1}(cl(V))) \) and \(int(f^{-1}(cl(U))) \cap int(f^{-1}(cl(V))) = \emptyset \). Therefore, \((X, \tau)\) is normal.