Contents

1 INTRODUCTION 1
 1.1 Background ... 1
 1.2 Motivation .. 3
 1.3 Problem Definition ... 5
 1.4 Research Methodology and Results 6
 1.5 Organization of Thesis .. 7

2 LITERATURE SURVEY 10
 2.1 Degrees of Freedom in Low Power CMOS Design 10
 2.2 Low Power Themes ... 11
 2.3 Introduction to Energy Recovery Adiabatic Logic 15
 2.3.1 Energy Dissipation in Conventional CMOS 16
 2.3.2 Energy Recovery Principle 17
 2.3.3 Adiabatic Logic Circuit 18
 2.4 Energy Recovery Adiabatic Logic Styles 20
 2.5 Adiabatic Circuits .. 29
 2.6 Towards Research Objectives 32

3 DESIGN OF ADIABATIC CIRCUIT 34
 3.1 Introduction ... 34
 3.2 Designing Adiabatic Circuit 35
 3.3 Summary ... 57

4 PERFORMANCE EVALUATION OF SELECTED QUASI-ADIABATIC
 LOGIC STYLES 59
 4.1 Introduction .. 59
 4.1.1 Selecting Quasi-adiabatic Logic Styles for Comparative
 Study .. 60
 4.1.2 Selection of 2:1 MUX as a Benchmark Circuit 61
 4.2 Implementation and Testing of 2:1 MUX Quasi-adiabatic Circuits 62
 4.2.1 Important Design and Test Considerations 62
4.2.2 Implementation and Testing .. 64
4.3 Performance Evaluation of CAL, PAL, IPGL and CMOS 86
 4.3.1 Comparison of Energy Dissipation 86
 4.3.2 Comparison of Delay ... 90
4.4 Conclusions and Remarks ... 91
5 PROPOSED NEW QUASI-ADIABATIC LOGIC STYLE 94
 5.1 Design of a New Quasi-adiabatic Logic Style 95
 5.1.1 PAL2NSM (PAL2N with Stand-by-Mode) 95
 5.1.2 Use of T-gate .. 103
 5.1.3 Comparison of PAL2NSM with Others 103
 5.1.4 Effect of Stand-by Time and Frequency on Energy Dissipa-
 tion .. 122
 5.1.5 Implementing a Boolean Expression 122
 5.1.6 Conclusions .. 125
 5.2 Detail Comparison with CMOS 126
 5.2.1 Data Activity Rates of CMOS and PAL2NSM 126
 5.2.2 Comparison of Energy Dissipations of Power-optimized
 CMOS and PAL2NSM 127
 5.2.3 Comparison of Energy Dissipations of CMOS Operated at
 its Maximum Frequency and PAL2NSM Operated at its
 Maximum Frequency 130
 5.3 Designing Cell Library and TYPICAL.LIB 132
 5.3.1 Simulation Results and Observation Tables 136
 5.3.2 Sample LUT for AND Gate 138
 5.3.3 Remarks and Future Scope 139
 5.4 Robustness Testing of PAL2NSM 140
 5.4.1 Effect of Parasitic on the Energy Dissipation and Delay . 140
 5.4.2 Harmonics Generated by the Circuit 142
 5.4.3 Noise Analysis ... 142
 5.4.4 Jitter Analysis .. 144
 5.5 Final Conclusions ... 151
6 RESEARCH CONTRIBUTIONS IN QUASI-ADIABATIC CIRCUIT
 THEORY ... 154
 6.1 Leakage Power Reduction in Quasi-adiabatic Circuit 154
 6.1.1 Control Circuits for Switching Purpose 158
 6.1.2 Conclusions and Remarks 160
 6.2 Partially Reversible Boundary Circuit Between Quasi-adiabatic
 and CMOS ... 161
 6.2.1 Design of Boundary Circuit 162