CONTENTS

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Description</th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>LIST OF TABLES</td>
<td>i</td>
</tr>
<tr>
<td>2.</td>
<td>LIST OF FIGURES</td>
<td>iii</td>
</tr>
<tr>
<td>3.</td>
<td>CERTIFICATE</td>
<td>x</td>
</tr>
<tr>
<td>4.</td>
<td>CANDIDATE’S DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>5.</td>
<td>ACKNOWLEDGEMENT</td>
<td>xii</td>
</tr>
<tr>
<td>6.</td>
<td>ABSTRACT</td>
<td>xv</td>
</tr>
<tr>
<td>7.</td>
<td>ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction to mitochondrial function and genetic disease

1. Mitochondrial genome
 1.1 Population studies
 1.1.2 Genetic disorder studies
 1.1.3 Human mitochondrial genome database

2. Mitochondrial proteome
 2.1 Mitochondrial proteome database

3. Complex-I
 3.1 Subunit composition and nomenclature
 3.2 Structural Studies of Complex-I
 3.2.1 Structure of prokaryotic Complex-I
 3.2.2 Structure of eukaryotic Complex-I
 3.3 Assembly and formation of Complex-I in eukaryotes
 I. Neurospora crassa
 II. Caenorhabditis elegans
 III. Chalmydomonas reinhardtii
 IV. Homo sapiens
 3.4 Complex-I related diseases
 I. Mutations in nDNA encoded subunits
 II. Mutations in mtDNA encoded subunits
 III. Mutations in tRNA and rRNA
 IV. Mutations in assembly factors
 3.5 Leigh syndrome
 I. Diagnosis of Leigh syndrome
Chapter 2: Materials and methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Phylogenetic analysis</td>
</tr>
<tr>
<td>2.2</td>
<td>Molecular modelling</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Core subunits of the Q module</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Modelling of Q module assembly</td>
</tr>
<tr>
<td>2.3</td>
<td>Evaluation of the generated models</td>
</tr>
<tr>
<td>2.4</td>
<td>In silico mutagenesis of the subunits</td>
</tr>
<tr>
<td>2.5</td>
<td>Molecular dynamics (MD) simulations of the individual subunits</td>
</tr>
<tr>
<td>2.6</td>
<td>Docking of n-DBQ in the Q module</td>
</tr>
<tr>
<td>2.7</td>
<td>In silico mutation analysis</td>
</tr>
<tr>
<td>2.8</td>
<td>Molecular dynamics (MD) simulation of subunit complex with bound n-DBQ</td>
</tr>
<tr>
<td>2.9</td>
<td>RNA isolation, cDNA preparation, primer design and PCR amplification</td>
</tr>
<tr>
<td>2.9.1</td>
<td>NDUFS3</td>
</tr>
<tr>
<td>2.9.2</td>
<td>NDUFS7</td>
</tr>
<tr>
<td>2.10</td>
<td>TA cloning and sub-cloning in pET bacterial expression vector</td>
</tr>
<tr>
<td>2.11</td>
<td>Site-directed mutagenesis</td>
</tr>
<tr>
<td>2.11.1</td>
<td>NDUFS3</td>
</tr>
<tr>
<td>2.11.2</td>
<td>NDUFS7</td>
</tr>
<tr>
<td>2.12</td>
<td>Protein expression and solubility</td>
</tr>
<tr>
<td>2.13</td>
<td>Purification of NDUFS3 and NDUFS7</td>
</tr>
<tr>
<td>2.13.1</td>
<td>NDUFS3 and its mutant</td>
</tr>
<tr>
<td>2.13.2</td>
<td>NDUFS7 and its mutants</td>
</tr>
<tr>
<td>2.14</td>
<td>Western blot and MALDI-TOF/TOF™</td>
</tr>
<tr>
<td>2.15</td>
<td>Biophysical characterization</td>
</tr>
<tr>
<td>2.15.1</td>
<td>Circular dichroism (CD) spectroscopy</td>
</tr>
<tr>
<td>2.15.2</td>
<td>Steady state fluorescence spectroscopy</td>
</tr>
<tr>
<td>2.15.3</td>
<td>Solute quenching studies</td>
</tr>
<tr>
<td>2.15.3.1</td>
<td>Steady state Fluorescence Quenching</td>
</tr>
<tr>
<td>2.15.3.2</td>
<td>Fluorescence lifetime measurement</td>
</tr>
</tbody>
</table>
2.15.4 Hydrophobic dye binding
2.15.5 Assays for studying protein aggregation
 2.15.5.1 Rayleigh light scattering
 2.15.5.2 Thioflavin-T binding
 2.15.5.3 Congo Red dye binding
2.16 Fe-S cluster detection
2.17 n-DBQ binding assay

Chapter 3: *In silico* studies on the effects of Leigh syndrome mutations on the structure and function of the human mitochondrial Complex-I

3.1 Human Q module
 3.1.1 Mutations in the human Q module
 3.1.2 Core subunits of the human Q module
 3.1.3 Modelling of the core subunits
 3.1.4 Modelling of the human Q module
 3.15 Docking of n-DBQ
 3.1.6 Energy calculations
 3.1.7 Molecular dynamics simulations
 NDUFS2
 NDUFS3
 NDUFS7
 NDUFS8
 3.1.8 Overall effects of mutations on structure
 3.1.8.1 Fluctuation of residues and compactness
 3.1.8.2 Effect on solvent accessibility, hydrogen bonding and energetic instability
 3.1.9 Conclusion

Chapter 4: Cloning, expression, purification and preparation of site-directed mutants of *NDUFS3* and *NDUFS7* subunits of the human mitochondrial Complex-I Q module

4.1 *NDUFS3*
 4.1.1 Cloning of full length human *NDUFS3* gene
 4.1.1.1 RNA extraction, cDNA preparation and amplification of the *NDUFS3* gene
 4.1.1.2 Cloning in pGEM-T vector
 4.1.1.3 Cloning in pET-28b(+) vector
 4.1.2 Reported mutations
4.1.2.1 Site-directed mutagenesis to engineer double mutant (T145I+R199W)
4.1.2.2 Expression and purification of the w-t and double mutant

4.2 NDUFS7

4.2.1 Cloning of full length human NDUFS7 gene
4.1.1.1 RNA extraction, cDNA preparation and amplification of the NDUFS7 gene
4.2.1.2 Cloning in pGEM-T vector
4.2.1.3 Cloning in pET-28b(+) vector
4.2.2 Reported mutations
4.2.2.1 Site-directed mutagenesis to engineer mutants V122M and R145H
4.2.2.2 Expression and purification of the w-t and mutants V122M and R145H

4.3 Conclusion

Chapter 5: Comparative studies using biophysical techniques of the human mitochondrial NDUFS3 subunit and its Leigh syndrome causing mutant

5.1 NDUFS3 and its function
5.2 W-t and T145I+R199W mutant NDUFS3 protein
5.3 Steady State Fluorescence spectroscopy and Circular Dichroism
5.4 Time resolved fluorescence studies
5.5 Solute quenching studies
5.5.1 Native NDUFS3 and mutant T145I+R199W
5.5.2 Denatured NDUFS3 and mutant T145I+R199W
5.6 Aggregation studies
5.6.1 Rayleigh light scattering
5.6.2 Thioflavin-T binding
5.6.3 Congo Red dye binding
5.7 Stability studies
5.7.1 pH dependence
5.7.2 Thermal unfolding
5.7.3 Gdn-HCl induced unfolding
5.8 Conclusion
<table>
<thead>
<tr>
<th>Chapter 6: Characterization and binding studies of NDUFS7 subunits and its mutants that cause Leigh syndrome</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>NDUFS7 and its function</td>
</tr>
<tr>
<td>6.2</td>
<td>NDUFS7 and its mutants</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of fluorescence spectra and secondary/tertiary structure of the w-t and mutants</td>
</tr>
<tr>
<td>6.4</td>
<td>Steady state fluorescence quenching</td>
</tr>
<tr>
<td>6.5</td>
<td>Conformational transitions</td>
</tr>
<tr>
<td>6.5.1</td>
<td>pH dependence</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Temperature effects</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Gdn-HCl induced unfolding</td>
</tr>
<tr>
<td>6.6</td>
<td>Iron sulphur cluster N2</td>
</tr>
<tr>
<td>6.7</td>
<td>Binding of n-DBQ</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Fluorescence based binding assay</td>
</tr>
<tr>
<td>6.7.2</td>
<td>MD simulation of w-t and mutants V122M and R145H with bound n-DBQ</td>
</tr>
<tr>
<td>6.8</td>
<td>Aggregation properties</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Rayleigh light scattering</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Thioflavin-T binding</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Congo red dye binding</td>
</tr>
<tr>
<td>6.9</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7: Conclusion</th>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>

Appendix	148

Bibliography | 158 |