CONTENTS

Preface
Acknowledgements

CHAPTER 1
DIELECTRIC RESONATORS AND MICROWAVE SUBSTRATES

1.1 MICROWAVE DIELECTRIC RESONATORS 2
1.1.1 Introduction 2
1.1.2 Dielectric Resonator: A Historical Perspective 4
1.1.3 Working principle of DRs 6
1.1.4 Modes in DRs 9
1.2 MATERIAL REQUIREMENTS 12
1.2.1 Relative Permittivity (ε_r) 12
1.2.2 High Quality Factor ($Q_u\chi_f$) 13
1.2.3 Low Temperature Coefficient of Resonant Frequency (τ_f) 17
1.3 APPLICATIONS OF DIELECTRIC RESONATORS 18
1.3.1 Dielectric Resonator Oscillators 19
1.3.2 Dielectric Resonator Filters 20
1.3.3 Dielectric Resonators Antennas 21
1.4 ESTIMATION OF LOSS TANGENT BY SPECTROSCOPIC METHOD 22
1.5 FACTORS AFFECTING DIELECTRIC LOSS TANGENT 28
1.6 INCIPIENT FERROELECTRICS 28
1.7 COMPOSITES 30
1.7.1 Polymer Matrix Composites 30
1.7.2 Connectivity 32
1.7.3 Percolation 33
1.8 ELECTRONIC APPLICATIONS 33
CHAPTER 2
SYNTHESIS AND CHARACTERIZATION OF DIELECTRIC RESONATORS AND CERAMIC POLYMER COMPOSITES

2.1 INTRODUCTION
2.1.1 Ceramics

2.2 SYNTHESIS OF CERAMICS
2.2.1 Solid State Synthesis
2.2.1.1 Weighing of Raw Materials
2.2.1.2 Mixing of Raw Materials
2.2.1.3 Calcination
2.2.1.4 Grinding
2.2.1.5 Addition of Polymeric Binder
2.2.1.6 Forming
2.2.1.7 Solid State Sintering
2.2.1.8 Effect of Dopants on Sintering

2.3 PREPARATION OF CERAMIC-POLYMER COMPOSITES
2.3.1 Powder Processing Method
2.3.2 Melt Mixing
2.3.3 Molding

2.4 STRUCTURAL AND MICROSTRUCTURAL CHARACTERIZATION OF CERAMICS
2.4.1 X-Ray Diffraction
2.4.2 X-ray Photoelectron Spectroscopy (XPS) 55
2.4.3 Scanning Electron Microscopy 56
2.4.4 Transmission Electron Microscopy 56
2.4.5 Neutron Diffraction 58
2.4.6 Vibrational Spectroscopy 60

2.5 MICROWAVE CHARACTERIZATION 60
2.5.1 Introduction 60
2.5.2 Measurement of Relative Permittivity (ε_r) 62
2.5.3 Measurement of Unloaded Quality Factor (Q_u) 65
2.5.4 Measurement of Temperature Coefficient of Resonant Frequency (τ_f) 67
2.5.5 Error Calculations in Dielectric Property Measurements 68
2.5.6 Split Post Dielectric Resonator (SPDR) 68
2.5.7 Cavity Perturbation Technique 71

2.6 THERMAL ANALYSIS 73

REFERENCES 74

CHAPTER 3
CRYSTAL SYMMETRY AND MICROWAVE DIELECTRIC RESPONSE
OF $\text{Sr}_{2+n}\text{Ce}_2\text{Ti}_{5+n}\text{O}_{15+3n}$ (n≤10) CERAMICS

3.1 SIMPLE AND COMPLEX PEROVSKITES 79
3.1.1 Introduction 79
3.1.2 Complex Perovskites 80
3.1.3 Octahedral Tilting 80
3.1.4 Tilt Systems and Space Groups 81

3.2 HIGH PERMITTIVITY MICROWAVE CERAMICS 83
3.2.1 $\text{Sr}_{2+n}\text{Ce}_2\text{Ti}_{5+n}\text{O}_{16+3n}$ (n≤10) Ceramics 84

3.3 EXPERIMENTAL PROCEDURE 84
3.4 RESULTS AND DISCUSSION 88
3.4.1 X-Ray Diffraction and XPS Studies 88
CHAPTER 4
TAILORING THE DIELECTRIC PROPERTIES OF
\(\text{Sr}_{2+n}\text{Ce}_2\text{Ti}_{5+n}\text{O}_{15+3n} \) (n=0, 7) CERAMICS

4.1 INTRODUCTION 136
4.2 EXPERIMENTAL PROCEDURE 137
4.3 RESULTS AND DISCUSSION 140
4.3.1 Influence of Dopants 140
4.3.2 Effect of Pb Substitution 150
4.3.2.1 Introduction 150
4.3.2.2 Phase Diagram of \(\text{Sr}_{9-x}\text{Pb}_x\text{Ce}_2\text{Ti}_{12}\text{O}_{36} \) (x=0-9) Ceramics 153
4.3.2.3 Room-Temperature IR and Raman Spectra and Crystal Structure 159
4.3.2.4 Dynamics of Phase Transitions 166
4.3.2.5 Estimation of Intrinsic and Extrinsic Dielectric Loss 169
4.3.3 Stacking 173
4.4 CONCLUSIONS 175
REFERENCES 176

CHAPTER 5
\(\text{Sr}_{2+n}\text{Ce}_2\text{Ti}_{5+n}\text{O}_{15+3n} \) (n=0) CERAMIC FILLED POLYMER COMPOSITES

5.1 INTRODUCTION 181
5.2 THEORETICAL MODELING 183
5.3 EXPERIMENTAL PROCEDURE 186
5.4 PTFE-\(\text{Sr}_2\text{Ce}_2\text{Ti}_5\text{O}_{15} \) COMPOSITES 187