LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Physical properties of cement</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Chemical composition of cement</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Sieve analysis of fine aggregate</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Physical properties of fine aggregate</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Physical properties of coarse aggregate</td>
<td>57</td>
</tr>
<tr>
<td>4.6</td>
<td>Sieve analysis of coarse aggregate (20mm)</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>Sieve analysis of coarse aggregate (12.5mm)</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>Physical properties of metakaolin</td>
<td>60</td>
</tr>
<tr>
<td>4.9</td>
<td>Chemical properties of metakaolin</td>
<td>60</td>
</tr>
<tr>
<td>4.10</td>
<td>Chemical composition of phosphogypsum</td>
<td>61</td>
</tr>
<tr>
<td>4.11</td>
<td>Characteristics of Deionised water</td>
<td>62</td>
</tr>
<tr>
<td>4.12</td>
<td>Classification and details of chemical substances</td>
<td>66</td>
</tr>
<tr>
<td>4.13</td>
<td>Details of test programme</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Compressive strengths of control mixes</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>Split tensile strengths of control mixes</td>
<td>82</td>
</tr>
<tr>
<td>5.3</td>
<td>Compounds and their intensities from XRD and SEM results of control samples</td>
<td>82</td>
</tr>
<tr>
<td>5.4</td>
<td>Setting times of cement at various concentrations of NaCl</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>Workability of NaCl in terms of compaction factor</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>Workability of NaCl in terms of vee-bee time</td>
<td>89</td>
</tr>
<tr>
<td>5.7</td>
<td>Compressive strengths of HPC at various concentrations of NaCl</td>
<td>91</td>
</tr>
<tr>
<td>5.8</td>
<td>Percentage change in compressive strengths of HPC at various concentrations of NaCl</td>
<td>92</td>
</tr>
<tr>
<td>5.9</td>
<td>Split tensile strengths of HPC at various concentrations of NaCl</td>
<td>92</td>
</tr>
<tr>
<td>5.10</td>
<td>Percentage change in split tensile strength of HPC at various concentrations of NaCl</td>
<td>92</td>
</tr>
<tr>
<td>5.11</td>
<td>Compounds and their intensities from XRD & SEM results of samples with NaCl</td>
<td>99</td>
</tr>
<tr>
<td>5.12</td>
<td>Setting times of cement at various concentrations of KCl</td>
<td>103</td>
</tr>
<tr>
<td>5.13</td>
<td>Workability of KCl in terms of compaction factor</td>
<td>105</td>
</tr>
<tr>
<td>5.14</td>
<td>Workability of KCl in terms of vee-bee time</td>
<td>105</td>
</tr>
<tr>
<td>5.15</td>
<td>Compressive strengths of HPC at various concentrations of KCl</td>
<td>107</td>
</tr>
</tbody>
</table>
5.16 Percentage change in compressive strengths of HPC at various concentrations of KCl 108
5.17 Split tensile strengths of HPC at various concentrations of KCl 108
5.18 Percentage change in split tensile strengths of HPC at various concentrations of KCl 108
5.19 Compounds and their intensities from XRD & SEM results of samples with KCl 115
5.20 Setting times of cement at various concentrations of Na$_2$SO$_4$ 120
5.21 Workability of Na$_2$SO$_4$ in terms of compaction factor 122
5.22 Workability of Na$_2$SO$_4$ in terms of vee-bee time 122
5.23 Compressive strengths at various concentrations of Na$_2$SO$_4$ 124
5.24 Percentage change in compressive strengths of HPC at various concentrations of Na$_2$SO$_4$ 125
5.25 Split tensile strengths of HPC at various concentrations of Na$_2$SO$_4$ 125
5.26 Percentage change in split tensile strengths of HPC at various concentrations of Na$_2$SO$_4$ 125
5.27 Compounds and their intensities from XRD & SEM results of samples with Na$_2$SO$_4$ 132
5.28 Setting times of cement at various concentrations of CaCO$_3$ 137
5.29 Workability of CaCO$_3$ in terms of compaction factor 139
5.30 Workability of CaCO$_3$ in terms of vee-bee time 139
5.31 Compressive strengths of HPC at various concentrations of CaCO$_3$ 141
5.32 Percentage change in compressive strengths of HPC at various concentrations of CaCO$_3$ 141
5.33 Split tensile strengths of HPC at various concentrations of CaCO$_3$ 141
5.34 Percentage change in split tensile strengths of HPC at various concentrations of CaCO$_3$ 142
5.35 Compounds and their intensities from XRD & SEM results of samples with CaCO$_3$ 148
6.1 Setting times of cement at various concentrations of Na$_2$CO$_3$ 155
6.2 Workability of Na$_2$CO$_3$ in terms of compaction factor 157
6.3 Workability of Na$_2$CO$_3$ in terms of vee-bee time 157
6.4 Compressive strengths of HPC cubes at various concentrations of Na$_2$CO$_3$ 159
6.5 Percentage change in compressive strengths of HPC at various concentrations of Na$_2$CO$_3$ 159
6.6 Split tensile strengths of HPC at various concentrations of Na$_2$CO$_3$ 159
6.7 Percentage change in split tensile strengths of HPC at various concentrations of Na$_2$CO$_3$ 160
6.8 Compounds and their intensities from XRD & SEM results of samples with Na$_2$CO$_3$
6.9 Setting times of cement corresponding to various concentrations of NaHCO$_3$
6.10 Workability of NaHCO$_3$ interms of compaction factor
6.11 Workability of NaHCO$_3$ interms of vee-bee time
6.12 Compressive strengths of HPC at various concentrations of NaHCO$_3$
6.13 Percentage change in compressive strengths of HPC at various concentrations of NaHCO$_3$
6.14 Split tensile strengths of HPC at various concentrations of NaHCO$_3$
6.15 Percentage change in split tensile strengths of HPC at various concentrations of NaHCO$_3$
6.16 Compounds and their intensities from XRD & SEM results of samples with NaHCO$_3$
7.1 Setting times of cement corresponding at concentrations of CaCl$_2$
7.2 Workability of CaCl$_2$ interms of compaction factor
7.3 Workability of CaCl$_2$ interms of vee-bee time
7.4 Compressive strengths of HPC cubes at various concentrations of CaCl$_2$
7.5 Percentage change in compressive strengths of HPC at various concentrations of CaCl$_2$
7.6 Split tensile strength of HPC at various concentrations of CaCl$_2$
7.7 Percentage change in split tensile strengths of HPC at various concentrations of CaCl$_2$
7.8 Compounds and their intensities from XRD & SEM results of samples with CaCl$_2$
7.9 Setting times of cement at concentrations of MgSO$_4$
7.10 Workability of MgSO$_4$ interms of compaction factor
7.11 Workability of MgSO$_4$ interms of vee-bee time
7.12 Compressive strengths of HPC at various concentrations of MgSO$_4$
7.13 Percentage change in compressive strengths of HPC at various concentrations of MgSO$_4$
7.14 Split tensile strength of HPC at various concentrations of MgSO$_4$
7.15 Percentage change in split tensile strengths of HPC at various concentrations of MgSO$_4$
7.16 Compounds and their intensities from XRD & SEM results of samples with MgSO$_4$
8.1 Setting times of cement at various concentrations of HCl 223
8.2 Workability of HCl in terms of compaction factor 225
8.3 Workability of HCl in terms of vee-bee time 225
8.4 Compressive strengths of HPC at various concentrations of HCl 227
8.5 Percentage change in compressive strengths of HPC at various concentrations of HCl 227
8.6 Split tensile strengths of HPC at various concentrations of HCl 227
8.7 Percentage change in split tensile strengths of HPC at various concentrations of HCl 228
8.8 Compounds and their intensities from XRD & SEM results of samples with HCl 234
8.9 Setting times of cement at various concentrations of H$_2$SO$_4$ 239
8.10 Workability of H$_2$SO$_4$ in terms of compaction factor 241
8.11 Workability of H$_2$SO$_4$ in terms of vee-bee time 241
8.12 Compressive strengths of HPC at various concentrations of H$_2$SO$_4$ 243
8.13 Percentage change in compressive strengths of HPC at various concentrations of H$_2$SO$_4$ 244
8.14 Split tensile strengths of HPC at various concentrations of H$_2$SO$_4$ 244
8.15 Percentage change in split tensile strengths of HPC at various concentrations of H$_2$SO$_4$ 244
8.16 Compounds and their intensities from XRD & SEM results of samples with H$_2$SO$_4$ 251
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>View of cement, fine aggregate and coarse aggregate</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>View of the Metakaolin</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>View of phosphogypsum</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Chemical admixture GLENIUM B233</td>
<td>65</td>
</tr>
<tr>
<td>4.5</td>
<td>Vicat’s apparatus</td>
<td>69</td>
</tr>
<tr>
<td>4.6</td>
<td>View of the test setup for Compaction Factor</td>
<td>72</td>
</tr>
<tr>
<td>4.7</td>
<td>View of the test setup for Vee-Bee Time</td>
<td>73</td>
</tr>
<tr>
<td>4.8</td>
<td>View of the Concrete filled in the Moulds</td>
<td>74</td>
</tr>
<tr>
<td>4.9</td>
<td>Compressive strength test set up</td>
<td>75</td>
</tr>
<tr>
<td>4.10</td>
<td>Split tensile strength test set up</td>
<td>76</td>
</tr>
<tr>
<td>4.11</td>
<td>XRD testing machine</td>
<td>77</td>
</tr>
<tr>
<td>4.12</td>
<td>SEM testing machine</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>XRD patterns of control sample of CHPC</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>XRD patterns of control sample of PHPC</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>XRD patterns of control sample of MHPC</td>
<td>84</td>
</tr>
<tr>
<td>5.4</td>
<td>SEM photograph of control sample of CHPC</td>
<td>85</td>
</tr>
<tr>
<td>5.5</td>
<td>SEM photograph of control sample of PHPC</td>
<td>85</td>
</tr>
<tr>
<td>5.6</td>
<td>SEM photograph of control sample of MHPC</td>
<td>86</td>
</tr>
<tr>
<td>5.7</td>
<td>Variation of initial setting times of cement with dosage of NaCl in water</td>
<td>88</td>
</tr>
<tr>
<td>5.8</td>
<td>Variation of final setting times of cement with dosage of NaCl in water</td>
<td>88</td>
</tr>
<tr>
<td>5.9</td>
<td>Variation of compaction factor with dosage of NaCl in water</td>
<td>90</td>
</tr>
<tr>
<td>5.10</td>
<td>Variation of vee-bee time with dosage of NaCl in water</td>
<td>90</td>
</tr>
<tr>
<td>5.11</td>
<td>7 days compressive strength of HPCs with NaCl concentrations</td>
<td>93</td>
</tr>
<tr>
<td>5.12</td>
<td>28 days compressive strength of HPCs with NaCl concentrations</td>
<td>93</td>
</tr>
<tr>
<td>5.13</td>
<td>90 days compressive strength of HPCs with NaCl concentrations</td>
<td>94</td>
</tr>
<tr>
<td>5.14</td>
<td>Compressive strength of HPCs with NaCl concentrations</td>
<td>94</td>
</tr>
<tr>
<td>5.15</td>
<td>% increase in compressive strength of HPCs with NaCl concentrations</td>
<td>95</td>
</tr>
<tr>
<td>5.16</td>
<td>7 days split tensile strength of HPCs with NaCl concentrations</td>
<td>95</td>
</tr>
<tr>
<td>5.17</td>
<td>28 days split tensile strength of HPCs with NaCl concentrations</td>
<td>96</td>
</tr>
<tr>
<td>5.18</td>
<td>90 days split tensile strength of HPCs with NaCl concentrations</td>
<td>96</td>
</tr>
</tbody>
</table>
5.19 Variation of split tensile strength of HPCs with NaCl concentrations
5.20 % increase in split tensile strength of HPCs with NaCl concentrations
5.21 XRD patterns of CHPC produced with NaCl mixed water
5.22 XRD patterns of sample of PHPC produced with NaCl mixed water
5.23 XRD patterns of sample of MHPC produced with NaCl mixed water
5.24 SEM photograph of sample of CHPC produced with NaCl mixed water
5.25 SEM photograph of sample of PHPC produced with NaCl mixed water
5.26 SEM photograph of sample of MHPC produced with NaCl mixed water
5.27 Variation of initial setting times of cement with dosage of KCl in water
5.28 Variation of final setting times of cement with dosage of KCl in water
5.29 Variation of compaction factor with dosage of KCl in water
5.30 Variation of vee-bee time with dosage of KCl in water
5.31 7 days compressive strength of HPCs with KCl concentrations
5.32 28 days compressive strength of HPCs with KCl concentrations
5.33 90 days compressive strength of HPCs with KCl concentrations
5.34 compressive strength of HPCs with KCl concentrations
5.35 % increase in compressive strength of HPCs with KCl concentrations
5.36 7 days split tensile strength of HPCs with KCl concentrations
5.37 28 days split tensile strength of HPCs with KCl concentrations
5.38 90 days split tensile strength of HPCs with KCl concentrations
5.39 Split tensile strength of HPCs with KCl concentrations
5.40 % increase in split tensile strength of HPCs with KCl concentrations
5.41 XRD patterns of sample of CHPC produced with KCl mixed water
5.42 XRD patterns of sample of PHPC produced with KCl mixed water
5.43 XRD patterns of sample of MHPC produced with KCl mixed water
5.44 SEM photograph of sample of CHPC produced with KCl mixed water
5.45 SEM photograph of sample of PHPC produced with KCl mixed water
5.46 SEM photograph of sample of MHPC produced with KCl mixed water
5.47 Variation of initial setting times of cement with dosage of Na\textsubscript{2}SO\textsubscript{4} in water
5.48 Variation of final setting times of cement with dosage of Na\textsubscript{2}SO\textsubscript{4} in water
5.49 Variation of compaction factor with dosage of Na\textsubscript{2}SO\textsubscript{4} in water
5.50 Variation of vee-bee time with dosage of Na\textsubscript{2}SO\textsubscript{4} in water
5.51 7 days compressive strength of HPCs with Na$_2$SO$_4$ concentrations 126
5.52 28 days compressive strength of HPCs with Na$_2$SO$_4$ concentrations 126
5.53 90 days compressive strength of HPCs with Na$_2$SO$_4$ concentrations 127
5.54 Compressive strength of HPCs with Na$_2$SO$_4$ concentrations 127
5.55 % decrease in compressive strength of HPCs with Na$_2$SO$_4$ concentrations 128
5.56 7 days split tensile strength of HPCs with Na$_2$SO$_4$ concentrations 128
5.57 28 days split tensile strength of HPCs with Na$_2$SO$_4$ concentrations 129
5.58 90 days split tensile strength of HPCs with Na$_2$SO$_4$ concentrations 129
5.59 Split tensile strength of HPCs with Na$_2$SO$_4$ concentrations 130
5.60 % decrease in split tensile strength of HPCs with Na$_2$SO$_4$ concentrations 130
5.61 XRD patterns of sample of CHPC produced with Na$_2$SO$_4$ mixed water 133
5.62 XRD patterns of sample of PHPC produced with Na$_2$SO$_4$ mixed water 133
5.63 XRD patterns of sample of MHPC produced with Na$_2$SO$_4$ mixed water 134
5.64 SEM photograph of sample of CHPC produced with Na$_2$SO$_4$ mixed water 134
5.65 SEM photograph of sample of PHPC produced with Na$_2$SO$_4$ mixed water 135
5.66 SEM photograph of sample of MHPC produced with Na$_2$SO$_4$ mixed water 135
5.67 Variation of initial setting times of cement with dosage of CaCO$_3$ in water 137
5.68 Variation of final setting times of cement with dosage of CaCO$_3$ in water 138
5.69 Variation of compaction factor with dosage of CaCO$_3$ in water 139
5.70 Variation of vee-bee time with dosage of CaCO$_3$ in water 140
5.71 7 days compressive strength of HPCs with CaCO$_3$ concentrations 142
5.72 28 days compressive strength of HPCs with CaCO$_3$ concentrations 143
5.73 90 days compressive strength of HPCs with CaCO$_3$ concentrations 143
5.74 Compressive strength of HPCs with CaCO$_3$ concentrations 144
5.75 % decrease in compressive strength of HPCs with CaCO$_3$ concentrations 144
5.76 7 days split tensile strength of HPCs with CaCO$_3$ concentrations 145
5.77 28 days split tensile strength of HPCs with CaCO$_3$ concentrations 145
5.78 90 days split tensile strength of HPCs with CaCO$_3$ concentrations 146
5.79 Split tensile strength of HPCs with CaCO$_3$ concentrations

5.80 % decrease in split tensile strength of HPCs with CaCO$_3$ concentrations

5.81 XRD patterns of sample of CHPC produced with CaCO$_3$ mixed water

5.82 XRD patterns of sample of PHPC produced with CaCO$_3$ mixed water

5.83 XRD patterns of sample of MHPC produced with CaCO$_3$ mixed water

5.84 SEM photograph of sample of CHPC produced with CaCO$_3$ mixed water

5.85 SEM photograph of sample of PHPC produced with CaCO$_3$ mixed water

5.86 SEM photograph of sample of MHPC produced with CaCO$_3$ mixed water

6.1 Variation of initial setting times of cement with dosage of Na$_2$CO$_3$ in water

6.2 Variation of final setting times of cement with dosage of Na$_2$CO$_3$ in water

6.3 Variation of compaction factor with dosage of Na$_2$CO$_3$ in water

6.4 Variation of vee-bee time with dosage of Na$_2$CO$_3$ in water

6.5 7 days compressive strength of HPCs with Na$_2$CO$_3$ concentrations

6.6 28 days compressive strength of HPCs with Na$_2$CO$_3$ concentrations

6.7 90 days compressive strength of HPCs with Na$_2$CO$_3$ concentrations

6.8 Compressive strength of HPCs with Na$_2$CO$_3$ concentrations

6.9 % decrease in compressive strength of HPCs with Na$_2$CO$_3$ concentrations

6.10 7 days split tensile strength of HPCs with Na$_2$CO$_3$ concentrations

6.11 28 days split tensile strength of HPCs with Na$_2$CO$_3$ concentrations

6.12 90 days split tensile strength of HPCs with Na$_2$CO$_3$ concentrations

6.13 Split tensile strength of HPCs with Na$_2$CO$_3$ concentrations

6.14 % decrease in split tensile strength of HPCs with Na$_2$CO$_3$ concentrations

6.15 XRD patterns of sample of CHPC produced with Na$_2$CO$_3$ mixed water

6.16 XRD patterns of sample of PHPC produced with Na$_2$CO$_3$ mixed water

6.17 XRD patterns of sample of MHPC produced with Na$_2$CO$_3$ mixed water

6.18 SEM photograph of sample of CHPC produced with Na$_2$CO$_3$ mixed water

6.19 SEM photograph of sample of PHPC produced with Na$_2$CO$_3$ mixed water

6.20 SEM photograph of sample of MHPC produced with Na$_2$CO$_3$ mixed water
6.21 Variation of initial setting times of cement with dosage of NaHCO$_3$ in water 172
6.22 Variation of final setting times of cement with dosage of NaHCO$_3$ in water 172
6.23 Variation of compaction factor with dosage of NaHCO$_3$ in water 174
6.24 Variation of vee-bee time with dosage of NaHCO$_3$ in water 174
6.25 7 days compressive strength of HPCs with NaHCO$_3$ concentrations 177
6.26 28 days compressive strength of HPCs with NaHCO$_3$ concentrations 177
6.27 90 days compressive strength of HPCs with NaHCO$_3$ concentrations 178
6.28 Compressive strength of HPCs with NaHCO$_3$ concentrations 178
6.29 % decrease in compressive strength of HPCs with NaHCO$_3$ concentrations 179
6.30 7 days split tensile strength of HPCs with NaHCO$_3$ concentrations 179
6.31 28 days split tensile strength of HPCs with NaHCO$_3$ concentrations 180
6.32 90 days split tensile strength of HPCs with NaHCO$_3$ concentrations 180
6.33 Split tensile strength of HPCs with NaHCO$_3$ concentrations 181
6.34 % decrease in split tensile strength of HPCs with NaHCO$_3$ concentrations 181
6.35 XRD patterns of sample of CHPC produced with NaHCO$_3$ mixed water 184
6.36 XRD patterns of sample of PHPC produced with NaHCO$_3$ mixed water 184
6.37 XRD patterns of sample of MHPC produced with NaHCO$_3$ mixed water 185
6.38 SEM photograph of sample of CHPC produced with NaHCO$_3$ mixed water 185
6.39 SEM photograph of sample of PHPC produced with NaHCO$_3$ mixed water 186
6.40 SEM photograph of sample of MHPC produced with NaHCO$_3$ mixed water 186
7.1 Variation of initial setting times of cement with dosage of CaCl$_2$ in water 189
7.2 Variation of final setting times of cement with dosage of CaCl$_2$ in water 190
7.3 Variation of compaction factor with dosage of CaCl$_2$ in water 191
7.4 Variation of vee-bee time with dosage of CaCl$_2$ in water 192
7.5 7 days compressive strength of HPCs with CaCl$_2$ concentrations 194
7.6 28 days compressive strength of HPCs with CaCl$_2$ concentrations 195
7.7 90 days compressive strength of HPCs with CaCl$_2$ concentrations 195
7.8 Compressive strength of HPCs with CaCl$_2$ concentrations 196
7.9 % increase in compressive strength of HPCs with CaCl_2 concentrations
7.10 7 days split tensile strength of HPCs with CaCl_2 concentrations
7.11 28 days split tensile strength of HPCs with CaCl_2 concentrations
7.12 90 days split tensile strength of HPCs with CaCl_2 concentrations
7.13 Split tensile strength of HPCs with CaCl_2 concentrations
7.14 % increase in split tensile strength of HPCs with CaCl_2 concentrations
7.15 XRD patterns of sample of CHPC produced with CaCl_2 mixed water
7.16 XRD patterns of sample of PHPC produced with CaCl_2 mixed water
7.17 XRD patterns of sample of MHPC produced with CaCl_2 mixed water
7.18 SEM photograph of sample of CHPC produced with CaCl_2 mixed water
7.19 SEM photograph of sample of PHPC produced with CaCl_2 mixed water
7.20 SEM photograph of sample of MHPC produced with CaCl_2 mixed water
7.21 Variation of initial setting times of cement with dosage of MgSO_4 in water
7.22 Variation of final setting times of cement with dosage of MgSO_4 in water
7.23 Variation of compaction factor with dosage of MgSO_4 in water
7.24 Variation of vee-bee time with dosage of MgSO_4 in water
7.25 7 days compressive strength of HPCs with MgSO_4 concentrations
7.26 28 days compressive strength of HPCs with MgSO_4 concentrations
7.27 90 days compressive strength of HPCs with MgSO_4 concentrations
7.28 Compressive strength of HPCs with MgSO_4 concentrations
7.29 % decrease in compressive strength of HPCs with MgSO_4 concentrations
7.30 7 days split tensile strength of HPCs with MgSO_4 concentrations
7.31 28 days split tensile strength of HPCs with MgSO_4 concentrations
7.32 90 days split tensile strength of HPCs with MgSO_4 concentrations
7.33 Split tensile strength of HPCs with MgSO_4 concentrations
7.34 % decrease in split tensile strength of HPCs with MgSO_4 concentrations
7.35 XRD patterns of sample of CHPC produced with MgSO_4 mixed water
7.36 XRD patterns of sample of PHPC produced with MgSO_4 mixed water
7.37 XRD patterns of sample of MHPC produced with MgSO_4 mixed water
7.38 SEM photograph of sample of CHPC produced with MgSO_4 mixed water
7.39 SEM photograph of sample of PHPC produced with MgSO\textsubscript{4} mixed water
7.40 SEM photograph of sample of MHPC produced with MgSO\textsubscript{4} mixed water
8.1 Variation of initial setting times of cement with dosage of HCl in water
8.2 Variation of final setting times of cement with dosage of HCl in water
8.3 Variation of compaction factor with dosage of HCl in water
8.4 Variation of vee-bee time with dosage of HCl in water
8.5 7 days compressive strength of HPCs with HCl concentrations
8.6 28 days compressive strength of HPCs with HCl concentrations
8.7 90 days compressive strength of HPCs with HCl concentrations
8.8 Compressive strength of HPCs with HCl concentrations
8.9 % decrease in compressive strength of HPCs with HCl concentrations
8.10 7 days split tensile strength of HPCs with HCl concentrations
8.11 28 days split tensile strength of HPCs with HCl concentrations
8.12 90 days split tensile strength of HPCs with HCl concentrations
8.13 Split tensile strength of HPCs with HCl concentrations
8.14 % decrease in split tensile strength of HPCs with HCl concentrations
8.15 XRD patterns of sample of CHPC produced with HCl mixed water
8.16 XRD patterns of sample of PHPC produced with HCl mixed water
8.17 XRD patterns of sample of MHPC produced with HCl mixed water
8.18 SEM photograph of sample of CHPC produced with HCl mixed water
8.19 SEM photograph of sample of PHPC produced with HCl mixed water
8.20 SEM photograph of sample of MHPC produced with HCl mixed water
8.21 Variation of initial setting times of cement with dosage of H\textsubscript{2}SO\textsubscript{4} in water
8.22 Variation of final setting times of cement with dosage of H\textsubscript{2}SO\textsubscript{4} in water
8.23 Variation of compaction factor with dosage of H\textsubscript{2}SO\textsubscript{4} in water
8.24 Variation of vee-bee time with dosage of H\textsubscript{2}SO\textsubscript{4} in water
8.25 7 days compressive strength of HPCs with H\textsubscript{2}SO\textsubscript{4} concentrations
8.26 28 days compressive strength of HPCs with H\textsubscript{2}SO\textsubscript{4} concentrations
8.27 90 days compressive strength of HPCs with H\textsubscript{2}SO\textsubscript{4} concentrations
8.28 Compressive strength of HPCs with H\textsubscript{2}SO\textsubscript{4} concentrations
8.29 % decrease in compressive strength of HPCs with H$_2$SO$_4$ concentrations 247
8.30 7days split tensile strength of HPCs with H$_2$SO$_4$ concentrations 247
8.31 28 days split tensile strength of HPCs with H$_2$SO$_4$ concentrations 248
8.32 90days split tensile strength of HPCs with H$_2$SO$_4$ concentrations 248
8.33 Split tensile strength of HPCs with H$_2$SO$_4$ concentrations 249
8.34 % decrease in split tensile strength of HPCs with H$_2$SO$_4$ concentrations 249
8.35 XRD patterns of sample of CHPC produced with H$_2$SO$_4$ mixed water 252
8.36 XRD patterns of sample of PHPC produced with H$_2$SO$_4$ mixed water 252
8.37 XRD patterns of sample of MHPC produced with H$_2$SO$_4$ mixed water 253
8.38 SEM photograph of sample of CHPC produced with H$_2$SO$_4$ mixed water 253
8.39 SEM photograph of sample of PHPC produced with H$_2$SO$_4$ mixed water 254
8.40 SEM photograph of sample of MHPC produced with H$_2$SO$_4$ mixed water 254